
Applying
Amdahl’s Other
Law to the data
center

D. Cohen
F. Petrini

M. D. Day
M. Ben-Yehuda

S. W. Hunter
U. Cummings

As computing system workloads become more distributed in
nature, there is an increasing dependence on the networking
interconnects between such systems. As stated by Amdahl’s Other
Law, this dependence not only exists on the I/O (input/output)
subsystem, but also on the memory subsystems. In particular, as
processor utilization increases, there is a direct, corresponding
increase in memory and I/O utilization. At a broader level, the
distribution of workloads is driving the need for computing based
on locality (or pods) to achieve the appropriate balance of
compute, network, and storage resources. This paper studies the
applicability of Amdahl’s Other Law to the data center to better
understand the relationship between processor systems and the
networks interconnecting them. This study is also relevant as
multicore systems will become more prevalent to sustain growth of
processing performance.

Introduction
Computer scientist Gene Amdahl is associated with many

rules in the field of computing. His most famous rule

involves his argument that the speedup realized from

system parallelism is limited by the amount of sequential

work done by the application [1]. Amdahl also argued for

system balance. Referred to as Amdahl’s Other Law, he

specified this design principal in the late 1960s, stating

that for an efficient computing system there must be a

balance between the platform clock speed, capacity of

main memory (i.e., random access memory, or RAM),

and the bit rate (in seconds) of the I/O (input/output)

bandwidth. If any one of these three resources becomes

constrained, a computation will be forced to wait.

It is generally accepted that computing systems now

and in the future will be built using multicore processors.

What is less clear is the impact this shift has on the host

memory hierarchy and the constraints it imposes on

system designers as they strive for system balance with

respect to processor speed, memory, and I/O bandwidth.

These multicore processing systems will have

independent, parallel threads of execution, forcing

designers to address various issues involving concurrency

and scalability within the system platform, the system

rack, and the data center as a whole. This further

complicates the platform designer’s effort to achieve

system balance. They must now account for independent

threads contending for system resources (e.g., memory

and I/O resources).

The scalability of computer systems is affected by

multiple factors including the central processing unit

(CPU), memory, I/O, and communication [2, 3]. Methods

for achieving scalability with concurrency include

symmetric multiprocessing (SMPs), loosely coupled

computing clusters, and massively parallel processing

(MPP) systems. An attribute that distinguishes between

these three system architectures is the level of data

coherency maintained. For example, an SMP machine

executes a single operating system (OS) while maintaining

coherency across the local caches of each processor.

Loosely coupled computing clusters have little, if any,

data coherency maintained across compute systems

interconnected across a networking fabric. MPP systems

may be viewed as residing between these two approaches,

such that coherency may be realized across large numbers

of interconnected compute systems often with a high-

performance networking fabric and appropriate low-

latency communication protocols. For example,

workloads running on high-performance, cluster-based

platforms frequently employ the message passing

�Copyright 2009 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied by any means or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 53 NO. 5 PAPER 5 2009 D. COHEN ET AL. 5 : 1

0018-8646/09/$5.00 ª 2009 IBM

interface (MPI), combined with remote direct memory

access (RDMA) as the transport method. The concept of

computing based on locality (or pods) is introduced as a

model for making use of these architectures and

technologies to achieve the appropriate balance of system

resources in the data center.

This paper focuses on locality-based computing,

multicore processors, the need for system balance,

techniques for scaling compute systems, and the impact

these have on enterprise data centers. In fact, the data

center as a whole could be viewed as the compute system.

Organizations have substantial investments in computer-

related hardware and the software that runs on it. The

composition of these investments will evolve with

incremental changes to exploit new designs and maintain

the appropriate system balance. Pragmatically, the vast

majority of existing software is sequential and cannot

take full advantage of multiprocessor platforms. Thus,

although industry support of parallel application

development will eventually be required, for the

foreseeable future companies will take advantage of

multicore platforms using a variety of virtualization

techniques [4].

Motivation
Advancements in processor, networking, and storage

technologies are leading system designers to re-think how

compute resources should be deployed. That is, as

networking bandwidth improves, system workloads and

services are becoming more distributed across multiple

computing systems, increasing the dependence on the

network infrastructure. Similarly, enhancements in storage

technology are encouraging a multitiered hierarchy across

the I/O network. Also, multicore processing will continue

to increase processing capability at the processor socket

level, which will drive increases in both memory and I/O

bandwidth. Finally, while virtualization will assist in

transitioning through some of these technological shifts,

hypervisors are also known to further drive memory

bandwidth requirements. If not addressed, the

combination of these advancements will lead to an

imbalance in compute resources within the data center.

Thus, our task is to answer two questions: 1) How can

the effective memory and I/O bandwidth of a single

thread be increased, and 2) what can be done to minimize

contention while maximizing concurrency? Of course,

answers to these questions must reflect the broader,

distributed nature of computation, both for

communication between threads on a single host and for

off-host communication.

The memory hierarchy

Densification is the process of increasing the number of

software-based computing systems running in a fixed

amount of space and time. Recently, this trend is reflected

in the move to system rack mounts and blade servers.

These are now being fitted with multiple processor

sockets and multi-processor cores. Not surprisingly, this

process is forcing system designers to focus on

concurrency and access to shared resources.

The implication of a conceptual model of a computer

involving processor, RAM, and I/O is a memory

hierarchy that consists of three tiers: register, memory,

and disk. This hierarchy involves the path used to shuttle

data and instructions in and out of the processor. The

tiers represent a tradeoff between access time and the cost

of memory space; the closer data resides to the processor,

the faster the access time and the more expensive the

space. On a multicore platform, with several processes

operating in parallel, this shuttling of data depends

strongly on available bandwidth, both memory and I/O.

The emphasis must be on minimizing contention for these

resources.

From this perspective, the performance of a workload

running on a balanced system will be limited by the most

‘‘expensive’’ component of the platform. This has led to a

general focus on memory and the introduction of multiple

levels of caches between the processor and RAM. The

first levels, level 1 (L1) and level 2 (L2) caches, reside on

the processor, while the level 3 (L3) cache typically resides

on the motherboard. The L1 and L2 caches are dedicated

to the processor and provide slightly more space, but they

are slightly slower than processor register accesses. At the

next level of the hierarchy is the L3 cache. It increases the

amount of space at the cost of slower access times. Since

it resides on the motherboard and is accessible by

multiple processors, it also introduces the need to

consider the effects of concurrency [5, 6].

A large change is anticipated with respect to industry-

standard servers in the area of memory and I/O

bandwidths. These servers will support non-uniform

memory access (NUMA). In this architecture, the

adjacency of a processor socket to memory slots on the

motherboard has an impact on its access to data. This, in

turn, will bias processor cores toward accessing data in

directly attached memory slots. Managing coherency of

the L1 and L2 caches will be a key requirement. The shift

to NUMA has also forced a redesign of the I/O

subsystem so that it interfaces directly with the memory

subsystem. This reduces the access time and increases

bandwidth by removing an intermediate switch hop in the

memory controller hub.

Increasing the bandwidth of the interface between

memory and I/O means that the I/O subsystem

bandwidth to external components must also increase.

This is represented by a shift to the Peripheral

Component Interconnect (PCI) next-generation design,

referred to as ‘‘PCI Express** gen2.’’ This will provide

5 : 2 D. COHEN ET AL. IBM J. RES. & DEV. VOL. 53 NO. 5 PAPER 5 2009

substantially more I/O bandwidth. In isolation, however,

there is still a need to consider the contention inherent in

a multicore system.

The I/O bus must somehow work in conjunction with

system virtualization technologies to allow multiple OSs,

or containers, to run simultaneously within a single

computer to natively share PCI Express devices. This will

be accomplished using Single Root I/O Virtualization

(SR-IOV), which focuses on single root topologies (e.g., a

single computer that supports virtualization technology).

In the SR-IOV model, each virtualized system has one

or more virtual PCI Express devices, referred to as virtual

(PCI) functions (VFs). For example, a VF can be a

virtualized Ethernet network adapter. A guest VM

(virtual machine) using a VF is given a direct path (e.g.,

DMA) to the physical device and is assigned some

priority in accessing that device. The implication is that

the I/O adapter is providing some switch-like capability.

The impact and opportunity of this is addressed in more

detail later in this paper (see section ‘‘Hypervisors and

I/O Scheduling across Domains’’).

The storage hierarchy

The data being shuttled into and out of these computers

and the virtualized systems they host will ultimately reside

on some type of persistent storage. This storage device

consists of a head unit containing CPUs and RAM

attached to disk drives, in the form of a storage array or a

collection that is referred to as ‘‘just a bunch of disks’’

(JBOD). At one end of the spectrum, this is a single host,

in which case the storage is referred to as ‘‘direct-attached

storage’’ (DAS). At the other end, the storage head is

connected to a network. This may be a block-based,

storage area network (SAN) or file-based, network-

attached storage (NAS).

Regardless of how data is accessed, a storage array has

traditionally focused on providing what is referred to as

‘‘aggregate disk throughput.’’ Data is striped across

multiple disks to increase the overall bandwidth to the

system. A storage engineer develops a solution based on

particular workload capacity requirements (considering

such questions as ‘‘how much data needs to be on disk?’’)

and performance requirements (‘‘how much data needs to

be delivered and how fast?’’). Understanding a workload

capacity requirement involves a simple calculation in

which the required capacity is divided by the single disk

capacity. Answering the second question is more

complicated.

A workload performance is limited by the number of

disk drives available to it, not the amount of capacity.

Performance is a function of the number of disks, a single

disk access time, and the number of I/O operations that

disk can deliver per second (IOPS). Access time

represents the length of time it takes to move the disk

head to where the data resides on the platter. This is also

a function of the spin rate of the drive. A mechanical disk

drive, spinning at 15,000 revolutions per minute (rpm)

delivers 250 IOPS, representing the amount of data the

drive can deliver at a given moment.

The introduction of solid-state drives (SSDs) as a

viable alternative to mechanical drives represents a

pivotal point in technology. Rather than an enhancement

to storage, SSDs represent a new tier in the memory

hierarchy. This is a level 4 (L4) cache that resides between

host memory and I/O. An SSD is capable of delivering 50

times the performance of the fastest mechanical drive.

This affects the storage engineering considerations in that

a relatively small number of SSD devices will be

combined with large capacity, Serial ATA (SATA) drives.

The mix will be dependent on the tradeoffs between price,

performance, and capacity [7–9].

In parallel, new storage products are becoming

available on the market. These deliver exceptional

performance and high capacity at a very low price. It is

now possible to purchase a fully resilient storage array

with more than 40 TB of usable capacity, which delivers

more than 100,000 IOPS and occupies less than 10 RU

(rack units) of data center rack space. For many

enterprise workloads, it is very appealing to directly

connect this storage to servers or share it among hosts on

a local area network (LAN). Of concern, however, is how

to ensure data on these devices can be backed up and,

more importantly, restored.

Convergence of messaging, storage, and backup

networking

The composition of the data center has evolved,

progressing from a container of a small number of

centralized, monolithic mainframe systems to one

dominated by thousands of small form-factor rack-

mounted blade servers. The implication of this evolution

is that computers have become increasingly

interconnected, resulting in a significant network inside

the machine room, requiring costly network services in

order to scale such resources. As the prominence of these

smaller, modular computers has risen, their capabilities

have also increased. Today, an enterprise-class x86 server

shares increasing characteristics with a mainframe (e.g.,

increased memory and I/O capacity and parallelism

through SMP).

However, so far, enterprise storage infrastructures have

not entirely followed the trend toward decentralization.

The case for centralized storage is reinforced by

requirements such as backup and recovery, resiliency, and

regulatory and compliance needs. This data protection

infrastructure benefits from natural economies of scale

associated with being centralized. Recently, the economic

burden of attaching an increasing number of centralized

IBM J. RES. & DEV. VOL. 53 NO. 5 PAPER 5 2009 D. COHEN ET AL. 5 : 3

modular servers to the network is shifting the balance in

favor of decentralization.

The cost of attachment to these networks has led to the

need for convergence because the current two-tier, fan-in

model of host access to data is increasingly expensive; the

more systems accessing the centralized storage, the more

bandwidth that is needed. Here, we use the phrase fan-in

model to denote a many-to-one model of sharing such

that some number of server systems are sharing a single

centralized storage. Network cost is increased by

connections (both number of instances and fan-out of the

clients), protocol extent (i.e., the physical distance

associated with a networking protocol), and bandwidth.

Notably, except for bandwidth, these considerations also

increase access latency. Obviously, there is a limit to

scaling a monolithic resource for host access to data.

While it is exceedingly difficult to make the storage

resource completely distributed, it is natural to cache or

tier central resources to reduce the bandwidth and fan-in

of accessing central resources. The platform shift to

multicore processors, the use of NUMA, and increased

host bandwidth will further motivate the need to increase

the access to this data. This distribution means that

application software and data must be deployed to these

networked systems while the organization or company

retains control over the integrity of this data.

The shift to decentralization emphasizes data diffusion

and locality-based computing. This paradigm is

predicated upon changes in the enterprise data center

network and the introduction of an intermediary caching

tier. Together, these work to reduce the latency between

communicating nodes by optimizing the proximity of

participants in the communication. By allocating

applications in a rational manner, the bandwidth needed

in the network core is reduced [10, 11].

Data center networks

Data center networks employ a hierarchy of switches in

order to scale capacity (i.e., bandwidth). The original

assumption, from which evolved this hierarchical

network model for providing sufficient bandwidth for

centralized data, is that storage and data protection

infrastructure are centralized, while hosts are increasingly

decentralized. When viewed in the aggregate,

communication between this centralized storage

infrastructure and hosts accessing data that resides on

that infrastructure has a fan-in pattern.

To accommodate this pattern, network designers scale

the capacity of the communication channel at the

network core. This approach to scalability employs a

layered architecture that calls for hosts to attach to a

switch at a bottom layer, or access layer. These are then

aggregated via an intermediate, or aggregation, layer.

Switches in this middle layer then attach to the ‘‘spine’’ of

a network, or core layer switches. This top layer is used to

scale the bandwidth needed to support access to the

storage and data protection infrastructure of a data

center.

This approach is becoming untenable for several

reasons. First, the bandwidth of a host I/O adapter,

which connects to the access layer, has risen from

10 Mb/s to 100 Mb/s to 1 Gb/s in the span of the past ten

years, and it is expected that new servers will come

equipped with a dual-port 10-Gb/s I/O adapter on the

motherboard. For a host to take advantage of this

expanded I/O capacity, the capacity of the network must

also be expanded.

Second, this economic burden is increased as the rate of

host attachment increases. As more hosts come online,

there is an increase in demand for network capacity,

increasing the network utilization. This increases the need

to expand the network. Third, the core-level switches are

predominantly proprietary, with ASIC (application-

specific integrated circuit)-based processors and custom

OSs. With limited availability, suppliers have been able to

demand a premium for this class of switch.

Finally, the current model emphasizes bandwidth over

latency (i.e., the time it takes for a processor to access

data needed to complete a computation). Latency is a

function of distance and the number of switches and

other network devices that must be traversed as a result of

the access. At any of these network devices, there may

also be congestion that results in some form of buffering

that further increases the latency.

Architecture Based on Clos-based fabrics

In response, the Clos architecture is emerging as a viable

alternative for enterprise data center networks. This is a

scalable switch stage that is implemented via a cascade of

increasingly smaller switches. These switches are arrayed

in a butterfly network. While the original Clos concept is

non-blocking with packet reordering, modern Clos

fabrics are statistically fully provisioned and maintain

packet ordering within flows. Similar to the trend of

arrays of commodity processors, a Clos fabric reduces

cost by making use of commodity volume switches

[12, 13].

A Clos fabric can have local switching at each tier. This

allows a balance of oversubscription from the access layer

to the spine (or core). Furthermore, a Clos can be

implemented with different switches at each tier, allowing

performance-optimized switches in the access layer and

service-optimized switches in the core.

This is leading to a design in which a relatively small

number of hosts are connected directly to a set of

aggregation dedicated switches. In this design, the access

layer resides on each computer. The aggregation switches

of the pod serve as the second stage of the Clos. The core

5 : 4 D. COHEN ET AL. IBM J. RES. & DEV. VOL. 53 NO. 5 PAPER 5 2009

network of the data center is at the top or spine of the

Clos. Note that the access and top-of-rack layers are

either fully subscribed or undersubscribed, while the core

is oversubscribed.

Over time, access layer switching grows at an

independent and faster rate than the second layer in the

top-of-rack switch, which is also growing at a faster rate

than the core. The growth of the access layer switching

function is evidenced in the switching logic of the

hypervisor, the queuing (and scheduling) features in

SR-IOV network interface cards (NICs), and the

introduction of small Ethernet or multi-root I/O

virtualization (MR-IOV) PCI Express switches on

individual compute elements [14–16].

File system caching tier

In the context of a single computer, a cache is generally

defined as a storage medium located in between the main

memory and the host computer processors [16]. When

scaling beyond a single host, however, a different type of

cache is employed. This cache, or rather series of caches,

resides in between a host main memory and external

storage. If that storage is locally attached, then this cache

is simply the page cache. On the other hand, if the storage

is remote, then this is a file system cache (or series of

caches). One tier is local to the host and one tier is local to

the network distribution layer [17, 18].

The caching tier that resides on the host is a client-side

cache that caches data locally. The mechanism trades disk

space to gain performance by avoiding access to data over

a slow network. The second tier of caching resides in the

network, between the host and a distributed file system.

This is an intermediate proxy cache that serves to reduce

utilization at the core level of the network.

The proxy cache employs a technique referred to as

data shipping. File access is partitioned across nodes in a

cluster or parallel file system. File blocks are assigned to

nodes in a round-robin fashion, so that each data block

will be read or written only by one particular node. Read

and write operations originating from other nodes are

forwarded to the node responsible for a particular data

block. This communication is performed over a high-

speed channel that is private to the cluster [19–21].

Data always originates from a centralized,

authoritative source. The implication is that the

intermediary and host-side caches hold replicas of the

data. If the original data is changed, then there must be

some model for keeping the replicas up to date. Changes

to the original data are eventually reflected in the caches.

In the case of read (and metadata) operations, this

consistency model applies one or more policies to the file

system metadata. If a replica in a cache is inconsistent

with the origin, the replica is ejected and the newer data

retrieved and sent to the cache [22–25].

The cache is primarily concerned with the consistency

of the replicated data it contains and the authoritative

source of that data. The implication is that instances of

the cache communicate with the centralized source. This

consistency model is tunable between the characteristics

of synchronous (i.e., always consistent) and asynchronous

(i.e., consistent over some specified time interval).

For read operations, the cache simply contains replicas.

For write operations, the cache supports write-through

and asynchronous semantics. The former simply writes

data back to the centralized, authoritative source,

retaining a local replica as part of the operation. When

configured for asynchronous write operations, data is

written to the persistent store of the cache and

subsequently migrated back to the centralized,

authoritative source. Again, a local replica is retained in

the cache as part of the operation.

Locality-based computing

Locality-based computing is an enterprise IT model that

attempts to harmonize two primary and conflicting goals.

The first goal involves moving data as close as possible to

the compute resources manipulating that data. The

second goal involves the minimization of the movement

of data by preferring local compute resources over remote

ones.

Locality-based computing minimizes the movement of

data by placing the different processes of a distributed

application as close as possible to each other, within the

same physical computer if possible. If this is not possible,

processes are placed in the same rack. To formalize the

goal of minimizing data movement, the pod concept is

useful. A pod is a collection of all the resources needed by

a distributed application within the same network

segment and shared switch, augmented by storage

caching appliances.

By introducing a pod, this architecture combines the

Clos network design with the two-tier, distributed file

system cache. This is a unit of deployment composed of

distribution layer switches and a set of host computers.

The majority of these hosts are dedicated to running a

hypervisor. The remaining hosts serve as the proxy cache

of the pod and the hypervisor implementation is extended

to serve as a client-side cache.

This pod-based configuration is engineered to

accommodate workload demand for data and reduce the

amount of time these workloads spend waiting on I/O.

The idea is to stage, or cache, more frequently accessed

data (and application-related software elements) within

the partition of the network distribution layer where the

workload is running.

As depicted in Figure 1, locality-based computing

considers the memory hierarchy at all points in the

system: Data needed for computation should be fetched

IBM J. RES. & DEV. VOL. 53 NO. 5 PAPER 5 2009 D. COHEN ET AL. 5 : 5

from storage over the network. Once fetched, that data

should remain in the local secondary storage cache. The

networking hardware should place the fetched data in the

main memory of the computer close to the processor and

core that will manipulate that data. The core performing

the manipulation should cache the data within its local

private cache and keep it there for as long as possible. The

OS (and by extension the hypervisor) should keep a

computational job running on the same core to maximize

the benefits of local caching.

Data residing on this network is transient. Long-term

persistence and data protection (i.e., archival and backup/

recovery) are centralized and external to a pod. The

implication is that some form of data movement, for

example, policy-based data life cycle or hierarchical

management technologies, is used to move data into and

out of a pod.

This model is depicted in Figure 2. Here, the data

protection infrastructure resides at the center of the data

center and is accessible over the core layer of the network.

One or more pods are deployed, each isolated by a set of

distribution layer switches and containing a caching

appliance. The data protection infrastructure and the

caching appliances share a single, global file system

namespace. This allows for a distributed policy engine

that carries out replication and migration policies of an

organization [26].

Next steps and challenges
The blueprint for locality-based computing calls for the

distribution and access layers of a data center-wide Clos

network to reside within a pod along with a tier of file

system caches. Workloads are then dispatched on guest

systems running within the pod. While technically feasible

today, there are a few challenges that need to be

overcome before this vision can be fully realized. This

section highlights what exists, what needs to be

developed, and which problems are open research

problems and which problems are likely to be solved

simply through implementations. In essence, we provide a

model for how to build a pod.

Optimized communication protocols

To date, the performance of system virtualization has

been limited by the I/O subsystem. This has largely been a

function of the I/O subsystem and the duality of the I/O

schedulers associated with the hypervisor and the guest

OS. In this model, the hypervisor is interposed with the

I/O adapter and the guest. Packets and related interrupts

must be processed by the hypervisor I/O scheduler. The

result has been that, even under ideal conditions, a

virtualized system struggles to saturate a gigabit Ethernet

link.

Two separate problems exist. First, if we have all of the

I/O transactions pass through the hypervisor and the

software IOMMU (I/O memory management unit)

function, then this leads to a significant increase in I/O

latency and reduction in bandwidth. Second, a lack of

rational coordination between the guest I/O scheduler,

the hypervisor I/O scheduler, and the aggregate effect of

hypervisor I/O schedulers across machines leads to

nondeterminism and poor performance of any particular

guest.

The access layer switching function of the new platform

operates in conjunction with the second layer switching

function, forming the bottom two layers of the Clos

topology. As mentioned, the key is that these layers are

undersubscribed (or fully subscribed) while the top layer

is oversubscribed. This places a significant load on the

storage subsystem, both on the local host and on those

Data center pod

Registers (CPU)

Processor cache (memory)

Local memory (memory)

Remote memory (network)

File system cache (disk)

In
cr

ea
si

ng
 b

an
dw

id
th

In
cr

ea
si

ng
 la

te
nc

y

In
cr

ea
si

ng
 c

ap
ac

it
y

In
cr

ea
si

ng
 p

ro
gr

am
m

ab
il

it
y

Performance implicationsMemory hierarchy

C
ac

he
 h

os
t(

s)

C
en

tr
al

iz
ed

 s
to

ra
ge

C
om

pu
te

 h
os

ts

Network

Architecture

File system cache (memory)

Cache
appliance

Figure 1

Positioning a pod within the memory hierarchy.

5 : 6 D. COHEN ET AL. IBM J. RES. & DEV. VOL. 53 NO. 5 PAPER 5 2009

that are accessed via the network. If this load is not

addressed, the performance gains of the new platform will

be squandered as guests spend an increasing amount of

time waiting on I/O.

Pod-based communications

There are three patterns of communication guests-based

application software running within a pod. In this

context, the virtual NIC (vNIC) of a guest can be

configured to use virtual LAN (VLAN) tagging as an

alternative to MAC (Media Access Control) addresses. In

this case, hardware support in the adapter binds an

incoming packet into a receive (RX) queue based on a

VLAN tag instead of a MAC address. On the transmit

(TX) side, the adapter can tag the packet with a VLAN

prior to forwarding. Source address anti-spoofing, both

networking layers 2 and 3, is also supported.

Communication with a domain external to the pod

The first of the three communication patterns is

associated with how an application communicates with

another application that is external to the pod. In this

case, messages exchanged between the two end-points

traverse the pod distribution switching layer and the core

network of the data center. Figure 3 depicts the remaining

two patterns of communication in which message traffic

remains within the boundaries of the pod.

Central file system
nodes

High-capacity/
low-cost storage

Data protection
infrastructure

Distribution
layer

Distribution
layer

Distribution
layer

Distribution
layer

Distribution
layer

Distribution
layer

Distribution
layer

Distribution
layer

Distribution switch
layer

Compute nodes

Caching appliance

Distribution switch
layer

Pod infrastructure

Data
protection

Data mover

Core layer

Figure 2

Overview of a pod within the data center.

vNIC

Remote target

Egress ring
buffer

Egress ring
buffer

vNIC

Local target

Hypervisor

Initiator

Switch

Scatter/gather
buffers

vNIC

DMA
transfer

DMA
transfer

DMA
transfer

Local RemoteCommon
Communications legend

mq/sr-iov
NIC

mq/sr-iov
NIC

Figure 3

Overview of a virtual network interface card (vNIC). The dashed

arrow lines indicate peer-to-peer communication. (DMA: direct

memory access; mq: message queue; SR-IOV: Single Root I/O

Virtualization.)

IBM J. RES. & DEV. VOL. 53 NO. 5 PAPER 5 2009 D. COHEN ET AL. 5 : 7

Communication between domains on the same compute

element

The second of these communication patterns is between

guests on the same compute element. As depicted in

Figure 3, messages flow between the initiator and the

local target. The NIC of the compute element serves as

the access layer switch. Its switching capabilities are

employed to identify that a packet transmitted from one

particular guest is destined for a guest on the same

hypervisor.

The packet is looped back internally without having to

go to the next level of switch. This operation is based on

the destination layer 2 address of the packet, expressed as

fMAC, VLANg. Multicast packets are looped back and

potentially are delivered to all local vNICs on same

VLAN. Optionally, hardware filtering can be applied via

the destination MAC. This feature can be exploited to

enable an efficient intra-node MPI. This concept can be

generalized to the pod or access layer, provided there is a

binding to an inter-node MPI stack for communication

that needs to leave the pod.

Note that using Ethernet hardware to transfer data

among domains residing on the same host is counter to

the prominent virtual-DMA method used by hypervisors

today. Most hypervisors implement an internal virtual

network switch over a shared memory medium. All guest-

to-guest communication goes over the virtual switch.

Messages are copied from one physical memory address

to another by a host CPU (see the section on memory and

the access layer switch).

Communication between domains on different compute

elements

The third communication pattern is between two guests

hosted by independent compute elements within the pod,

for example between a guest and the caching appliance of

the pod. In this pattern, the distribution and access layer

switching tiers of the pod collaborate in order to ensure

quality of service. This collaboration motivates changes

in the I/O scheduling mechanism of the compute element

as well as enhancements to the Ethernet protocol.

Hypervisors and I/O scheduling across domains

Figure 4 depicts the model of the I/O scheduling in the

hypervisor. Note, however, that when this paper was

written, the hypervisor was situated between guests it

hosted and the I/O subsystem of the computer. All I/O

passed through the hypervisor. When the hardware

adapter is functioning as a switch, it does all I/O

scheduling within its own networking domain. That is,

the hardware I/O adapter does all the scheduling

previously done in the hypervisor, leaving the hypervisor

to handle intra-domain scheduling.

The hardware adapter is responsible for scheduling

packets associated with different domains. All ingress

traffic is processed at wire speed, meaning packets are

forwarded on arrival. During transmission, the hardware

scheduler handles scheduling across the TX queues,

forwarding packets to their destination. The scheduler of

the adapter has configurable features such as QoS

(quality of service) with respect to priority and bandwidth

(e.g., maximum bandwidth and best effort). Both relative

and absolute allocations on bandwidth are supported.

The role of the hypervisor/OS in this model is to

configure the adapter’s scheduler and monitor its

hardware counters.

The I/O resources (in terms of priority and bandwidth)

are allocated to a vNIC when it is created, and from that

point on, the domain can access hardware directly

without the hypervisor being in its way. Once a domain

has registered its vNIC with the adapter, the adapter

forwards interrupts directly to that domain via MSI-X

(Message Signal Interrupt Extension). Interrupt and

packet processing are handled directly by the domain

with no interference from the hypervisor or OS.

Enhancements to the Ethernet protocol

In terms of Converged Enhanced Ethernet (CEE)

features, the feature most commonly supported by the

Storage node

Blade

H
yp

er
vi

so
r

Private interconnect

NIC

vNIC vNIC vNIC vNIC

NIC

Each guest’s system/
boot volume resides
on the caching appliance

File

Guest

Virtual
block
device

Guest

Virtual
block
device

Guest

Virtual
block
device

Guest

Virtual
block
device

Figure 4

Distribution and access layer switching in the pod. The red dashed

lines indicate the logical paths between a guest and the storage.

5 : 8 D. COHEN ET AL. IBM J. RES. & DEV. VOL. 53 NO. 5 PAPER 5 2009

new adapters is per-priority-pause (PPP). In addition,

many of the adapters provide early (pre-standard

ratification) support for congestion notification including

some form of rate limiting and filters to trap congestion

notifications. This latter feature is dependent on packet

format being standardized. Finally, the adapters may

support enhanced transmission selection that schedules

priorities and converged types of service groups across

each port.

As far as support for PPP, there are three bits in an

Ethernet frame for pause support. This allows up to eight

queues to be addressed directly; however, most of the

adapters have more than eight queues. This leaves the

scheduler of the adapter responsible for mapping the

packet to the appropriate queue and applying pause as

required. Each queue, RX and TX, is associated with a

priority, with best effort being the default. A particular

queue may have ‘‘pause’’ enabled.

Care needs to be taken to separate or segment a queue

with pause enabled from other classes of traffic. For

example, if Fibre Channel over Ethernet (FCoE) and

remote DMA (RDMA) transport protocols are to be

supported, these should be assigned a dedicated vNIC.

Using this approach, pause can be enabled without

affecting or having an impact on other traffic flowing in

and out of that domain.

For this type of specialized traffic (e.g., FCoE and

RDMA), there is a perceived need for encoding

information in the frame beyond what is available via

VLAN tagging or MAC address. The desire here is to be

able communicate the identity of a domain between the

NIC and the first-level switch without using MAC

addresses and without overwriting any important

information in the packet.

As mentioned, a new alternative to using MAC

addresses or VLAN tagging has been proposed. Called

VN-Tagging, this proprietary approach has elicited a

great deal of controversy. The debate centers on the

deficiencies of the standard VLAN/MAC approaches and

whether these are sufficient. Widespread consensus

suggests that there is no need for a new packet format or

tagging method.

Memory and the access layer switch

Using physical DMA instead of a virtual shared memory

switch has several key advantages when used with

SR-IOV-capable adapters. Typical advantages of using

physical DMA compared to virtual DMA to move data

among domains on the same physical host include the

following:

� The host CPUs can perform other work while the

data is being moved by the I/O adapter, mitigating the

effects of Amdahl’s Other Law.

� The hypervisor interferes less with the guest I/O

scheduling strategy than it does when using virtual

DMA.
� Multi-queue and self-virtualizing I/O hardware allows

linear scaling, whereby physical queue-pairs can be

allocated per vNIC. With appropriate under-

provisioning of switch capacity, DMA transfers can

occur in parallel. This enables the multichannel QoS

strategies described earlier.
� There is symmetry in the latency, throughput, and

CPU utilization for transfers that remain within the

pod regardless of whether they stay on the same

physical host.

Host CPU may continue with non-I/O related work

When transferring data between two domains on the

same physical host, physical DMA moves the data using

I/O processors on the NIC. This mostly frees the CPU to

continue performing work that is not related to I/O

transfers. The CPU does need to do some work, however,

as listed in the following steps.

1. A CPU for the target domain needs to work with the

hypervisor to program the IOMMU of the server

with a translation table entry that enables DMA into

the memory of the target domain.

2. A CPU for the initiating domain needs to program

the NIC to perform the DMA transfer. This includes

marshalling the data into a scatter-gather buffer set

and using the device driver of the NIC to set up the

DMA.

3. A CPU for the target domain needs to process the

incoming interrupt event that signals a DMA. This

probably involves moving the received data out of

the egress ring buffer and maintaining ring buffer

pointers.

4. A CPU for the target domain may reprogram the

IOMMU to remove the translation table entry that

allowed the DMA to occur. This is an optional step

that depends on the IOMMU strategy of the

hypervisor and domain.

5. A CPU for the initiating domain needs to clean up

after the transfer. This involves asynchronously

destroying or reinitializing the scatter-gather buffer

and cleaning up any other resources associated with

the transfer.

As the steps above show, the domain CPUs are not

entirely relieved of work even when using physical DMA.

In fact, it may be the case that for many very small

(cache-line size) transfers, physical DMA is more CPU

intensive than virtual DMA. For all other cases, however,

IBM J. RES. & DEV. VOL. 53 NO. 5 PAPER 5 2009 D. COHEN ET AL. 5 : 9

the ‘‘housekeeping’’ associated with physical DMA is

easily amortized across all the bytes that are moved by the

NIC hardware, and the result is that the CPUs of the

domains can continue processing data while high-

throughput transfers are proceeding. The payoff is that

Amdahl’s Other Law may be addressed even for high-

throughput applications.

Hypervisor interferes less with I/O scheduling

Physical DMA among domains mostly removes the

hypervisor from the I/O scheduling process. Using virtual

DMA, the hypervisor is responsible for transferring the

data from the memory of one domain to that of the other.

Using physical DMA, the hypervisor does not perform

this step. I/O scheduling is totally under the control of the

initiating domain and also mostly under the control of the

target domain.

Once the initiating domain sets up the DMA transfer

(Step 2 above), the NIC takes control and moves the data

independently of the hypervisor. The data will go to the

target even if the hypervisor de-schedules the initiating

domain. This is a key point because this feature preserves

the I/O scheduling policies of the domain.

On the target domain, the hypervisor has a minor

influence in the delivery of the received data to its

ultimate destination. Before the target domain can service

its egress ring buffer, the hypervisor must receive the

device interrupt of the NIC and deliver an interrupt event

to the target domain. Interrupt events are usually

delivered whenever the hypervisor reschedules a domain

CPU. At that point, the target domain performs the steps

outlined in Step 3 above.

The latency at the target domain introduced by the

hypervisor will be at least one scheduling interval (for a

domain with the number of virtual CPUs equal to the

number of physical CPUs) and potentially several

scheduling intervals (for a domain with the number of

virtual CPUs greater than the number of physical CPUs).

Domains that are running applications sensitive to I/O

latency should be provisioned with the number of virtual

CPUs equal to the number of physical CPUs.

Linear I/O scaling per domain

With physical DMA and smart NICs, I/O transfer

capacity can approach linear scalability as more physical

NICs are added to the initiating and target domains.

(Here, smart NICs refers to NICs that collect state

information regarding the network connections in order

to offload network functionality from the processor core.)

It is also necessary to maintain an under-provisioning of

switch capacity, or the NICs will overwhelm the capacity

of the switch to transfer the bits across the fabric.

Using physical DMA, memory transfers will occur in

parallel. This is true within a single domain when that

domain has control over multiple physical NICs, and

across all the domains of a hypervisor.

With appropriate switch capacity, I/O scalability will

likely remain linear up to the physical provisioning

capacity of industry-standard hardware for the coming

several years. The requirements placed on the CPU by

physical DMA are relatively small enough not to

influence the scalability of I/O for conventional and larger

I/O sizes.

Locality of memory reference within a physical
host computer
As mentioned, locality-based computing aims to move

data as close as possible to the compute resource. Once

data is close to the compute resource, the aim is to keep

the data and resource together for as long as possible. In

other words, once data is being processed, further

movement of that data should be restricted.

When data arrives within the main memory of the

physical host computer, there are some important issues

with hypervisors of today that interfere with the goals of

locality-based computing. The hypervisor issues are each

related to the overprovisioning of memory and processor

resources. The remedies include making use of the

physical memory topology of the host, minimizing the

movement of host processes across cores, processors and

sockets, and preventing the fragmentation of physical

memory.

In the future, all commercial server processors will have

NUMA characteristics. Server processors have multiple

sockets and cores, and each socket and core may have an

integrated memory controller with attached memory.

Since the entire processor is a cache-coherent memory

domain, memory access times depend on the locality of

the memory controller in reference to the core fetching

the memory. These access time differences must be taken

into account by the hypervisor when allocating memory

for domains and when scheduling domains to run on

processor cores.

The hypervisor requires information on the

relationship between physical memory addresses and

processor cores, and it should always attempt to place

data in memory adjacent to the core that will manipulate

the data. Once data is being processed, the hypervisor

should attempt to keep an executing domain running on

the same processor core. Doing so increases the locality of

memory reference by the domain, which corresponds to

better cache usage and higher performance.

Hypervisors of today are tuned to minimize the

consumption of physical memory using techniques such

as guest swapping, page coalescing, and memory

ballooning. Guest swapping evacuates pages within a

domain from main memory to secondary storage. Page

coalescing identifies pages among domains that hold the

5 : 10 D. COHEN ET AL. IBM J. RES. & DEV. VOL. 53 NO. 5 PAPER 5 2009

same data, and points all such pages to the same physical

memory page. Ballooning allows domains to temporarily

increase their use of physical memory by borrowing

physical pages from each other.

All of the memory techniques described above are

counter to the goals of locality-based computing because

they involve the movement of data away from the

processor currently accessing that data. Guest swapping

is particularly counter to the goals of locality-based

computing because it moves data all the way to secondary

storage. Page coalescing tends to increase memory access

times, because the single shared page may reside on a

distant memory controller. Ballooning also tends to

distribute data on pages that are less desirable from a

NUMA viewpoint.

For a balanced analysis, we should point out that

memory and I/O overprovisioning using the techniques

described above has been a critical factor in the

economics of computing for general-purpose data center

applications. Traditionally, hypervisors have helped to

make very expensive computers economical by

amortizing the greatest possible amount of work across a

finite set of expensive physical resources.

For many applications, however, higher throughput

and lower latency are more important than

overprovisioning memory, I/O, and CPU resources. In

this environment, hypervisors need to change their

memory allocation and processor usage policies in the

following ways:

1. Hypervisors must be easily configurable such that

they do not overprovision memory.

Overprovisioning of memory and processor

resources by a hypervisor reduces the locality of

memory reference and works against the goals of

locality-based computing.

2. A hypervisor must allocate memory for a domain

using physically contiguous memory. Most

hypervisors today allocate memory for a domain

using discontinuous physical pages, and with no

regard for the proximity of a socket or core to a dual

inline memory module (DIMM).

3. Each virtual CPU must be backed by at least one

physical processor core. Hypervisors should schedule

multicore domains with a consideration toward the

physical topology of the server. In other words, the

virtual CPUs of a domain should all be scheduled on

the same socket whenever possible.

4. Once a domain is executing on a given core, the

hypervisor needs to keep that domain executing on

the same core for as long as possible. When

scheduling the domain to run on a different core, the

first choice should be another core within the same

socket.

Conclusion
With significant advancements in processing, networking,

storage, and virtualization technologies, disruption is

occurring in the data center on a large scale. As these

advancements continue, the importance of a flexible and

dynamic infrastructure is becoming apparent. When

trying to understand and meet application requirements

such as latency and bandwidth, Amdahl’s Other Law can

be applied at the various levels of the data center: the

compute node, the pod, and even across the data center

itself.

The pod level is the ideal level of optimization. By

optimizing at the pod level, we can reduce the cost and

increase performance, reduce the complexity of the

technology outside of the pod, and establish a common

external network interface for pod connectivity to the

data center networking core, thereby protecting customer

investment and maintaining a path for deploying future

technology advancements. Optimizing at the pod level

also enables us to exploit virtualization technology at

multiple levels.

Naturally, many challenges still exist. We believe that

these are manageable and should be approached in a

manner that may provide efficient access across various

different industries.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of PCI-SIG
Corporation, Citrix Systems, Inc., or Linus Torvalds in the United
States, other countries, or both.

References
1. J. Gray and P. Shenoy, ‘‘Rules of Thumb in Data

Engineering,’’ Proceedings of the 16th International Conference
on Data Engineering (ICDE), Washington, DC, February 28–
March 03, 2000, p. 3.

2. K. Hwang, Advanced Computer Architecture: Parallelism,
Scalability, Programmability, McGraw-Hill Book Co., Inc.,
New York, 1993.

3. K. Hwang and Z. Xu, Scalable Parallel Computing:
Technology, Architecture, Programming, McGraw-Hill Book
Co., Inc., San Francisco, CA, 1998.

4. K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.
Husbands, K. Keutzer, D. A. Patterson, et al., ‘‘The
Landscape of Parallel Computing Research: A View from
Berkeley,’’ University of California, Berkeley, Technical
Report No. UCB/EECS-2006-183, December 2006.

5. U. Drepper, ‘‘What Every Programmer Should Know about
Memory,’’ Technical Report, Red Hat, Inc., November 2007;
see http://people.redhat.com/drepper/cpumemory.pdf.

6. R. van der Paas, ‘‘Memory Hierarchy in Cache-Based
Systems,’’ Technical Report 817-0742-10, Sun Microsystems,
November 2002.

IBM J. RES. & DEV. VOL. 53 NO. 5 PAPER 5 2009 D. COHEN ET AL. 5 : 11

7. K. S. Yim and J. C. Son, ‘‘SynergyFS: A Stackable File System
Creating Synergies between Heterogeneous Storage Devices,’’
Proceedings of the Linux Symposium, 2008, pp. 255–259.

8. B. Gregg, ZFS L2ARC; see http://blogs.sun.com/brendan/
entry/test.

9. A. Leventhal, ‘‘Flash Storage Memory,’’ Communications
ACM 51, No. 7, 47–51 (2008).

10. J. Szalay, J. Bunn, I. Gray, I. Foster, and I. Raicu, ‘‘The
Importance of Data Locality in Distributed Computing
Applications,’’ NSF Workflow Workshop 2006.

11. I. Raicu, Y. Zhao, I. Foster, and A. Szalay, ‘‘Accelerating
Large-Scale Data Exploration through Data Diffusion,’’
Proceedings of the 2008 International Workshop on Data-
Aware Distributed Computing, Boston, MA, June 24, 2008,
pp. 9–18.

12. W. Dally and B. Towles, Principles and Practices of
Interconnection Networks, Morgan Kaufmann Publishers, San
Francisco, CA, 2003.

13. M. Al-Fares, A. Loukissas, and A. Vahdat, ‘‘A Scalable,
Commodity, Data Center Network Architecture,’’ Proceedings
of the ACM SIGCOMM Conference, Seattle, WA, August
2008.

14. R. Russell, ‘‘Virtio: Towards a De-Facto Standard for Virtual
I/O Devices,’’ ACM SIGOPS Operating Systems Review 42,
No. 5, 95–103 (2008).

15. S. Tripathi, K. Belgaied, and N. Droux, OpenSolaris Project
Crossbow: Network Virtualization & Resource Partitioning;
see http://opensolaris.org/os/project/crossbow/Docs/
Crossbow_WP.pdf.

16. Y. Weinsberg, D. Dolev, T. Anker, M. Ben-Yehuda, and P.
Wyckoff, ‘‘Tapping into the Fountain of CPUs: On Operating
System Support for Programmable Devices,’’ Proceedings of
the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
Seattle, WA, March 1–5, 2008, pp. 179–188.

17. S. Raina, ‘‘Virtual Shared Memory: A Survey of Techniques
and Systems,’’ University of Bristol Technical Report. UMI
Order Number: CSTR-92-36, 2009.

18. D. Howells, ‘‘FS-Cache: A Network Filesystem Caching
Facility,’’ Proceedings of the Linux Symposium, Ottawa,
Canada, July 19–22, 2006.

19. B. Callaghan, NFS Illustrated, Addison-Wesley Longman
Ltd., 2000.

20. R. Noronha and D. K. Panda, ‘‘IMCa: A High Performance
Caching Front-End for ClusterFS on InfiniBand,’’ Proceedings
of the 2008 37th International Conference on Parallel
Processing (ICPP), Washington, DC, September 9–11, 2008,
pp. 462–469.

21. F. Schmuck and R. Haskin, ‘‘GPFS: A Shared-Disk File
System for Large Computing Clusters,’’ Proceedings of the 1st
USENIX Conference on File and Storage Technologies,
Monterey, CA, January 28–30, 2002, USENIX Association,
Berkeley, CA, p. 19.

22. P. Deniel, T. Leibovici, and J. C. Lafoucriere, ‘‘GANESHA, A
Multi-usage with Large Cache NFSv4 Server,’’ Proceedings of
the Linux Symposium, Ottawa, Canada, July 27–30, 2007.

23. R. Ananthanarayanan, M. Eshel, R. Haskin, M. Naik, F.
Schmuck, and R. Tewari, ‘‘Panache: a Parallel WAN Cache
for Clustered Filesystems,’’ ACM SIGOPS Operating Systems
Rev. 42, No. 1, 48–53 (2008).

24. A. Gulati, M. Naik, and R. Tewari, ‘‘Nache: Design and
Implementation of a Caching Proxy for NFSv4,’’ Proceedings
of the 5th USENIX Conference on File and Storage
Technologies, San Jose, CA, February 13–16, 2007, USENIX
Association, Berkeley, CA, p. 27.

25. M. Turner, ‘‘FlexCache Caching Architecture,’’ Technical
Report TR-3669, NetApp, Inc., June 2008, see http://
media.netapp.com/documents/tr-3669.pdf.

26. S. Oehme, J. Deicke, J. Akelbein, R. Sahlberg, A. Tridgell, and
R. L. Haskin, ‘‘IBM Scale Out File Services: Reinventing
Network-Attached Storage,’’ IBM J. Res. & Dev. 52, No. 4,
319–328 (2008).

Received December 9, 2008; accepted for publication
January 12, 2009

David Cohen EMC, 11 Cambridge Center, Cambridge,
Massachusetts (cohen_david2@emc.com). Mr. Cohen’s career
spans more than 25 years. He recently joined the EMC Cloud
Infrastructure group after spending the past several years working
in the financial services industry, most recently at Goldman Sachs
where he was a Senior Storage Strategist. Prior to this, he worked
at Merrill Lynch where he focused on a variety of low-latency and
utility computing problems.

Fabrizio Petrini IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (fpetrini@us.ibm.com). Dr. Petrini is a Senior Researcher of
the Cell Solution Department of the IBM T. J. Watson Research
Laboratory. His research interests include various aspects of
multicore processors and supercomputers, including high-
performance interconnection networks and network interfaces,
fault tolerance, job scheduling algorithms, parallel architectures,
operating systems, and parallel programming languages. He is
associate editor of IEEE Transactions on Parallel and Distributed
Processing.

Michael D. Day IBM Systems and Technology Group, 3039
Cornwallis Road, Research Triangle Park, North Carolina 27709
(mdday@us.ibm.com). Mr. Day is a Virtualization Architect in the
IBM Linux Technology Center, as well as Distinguished Engineer.
For the past four years, he has worked on open-source
virtualization technology including the Xen** and Linux** Kernel-
based Virtual Machine (KVM) hypervisors. He has more than 20
years of experience as a programmer of operating systems,
networking protocols, systems management technology, and
hypervisor.

Muli Ben-Yehuda IBM Haifa Research Laboratory,
University Campus, Haifa 31905, Israel (muli@il.ibm.com).
Mr. Ben-Yehuda is a Systems Researcher at the IBM Haifa
Research Laboratory where he was recently named an IBMMaster
Inventor. His research interests include I/O for virtualized systems,
I/O memory management units (IOMMUs), smart I/O devices,
and various novel uses for virtual machines. He has contributed to
numerous operating systems and hypervisors, including the Linux
kernel, the Xen virtual machine monitor, and the Linux Kernel-
based Virtual Machine (KVM).

Steven W. Hunter IBM Research Division, 3039 Cornwallis
Road, Research Triangle Park, North Carolina 27709
(hunters@us.ibm.com). Dr. Hunter is an IBM Distinguished
Engineer in IBM Research where his focus has been on architecture
and design for servers, network and clustering systems, and various
network technologies, including those involving the IBM
BladeCenter* and next-generation computing systems. He is a
licensed Professional Engineer, a Senior Member of the IEEE, and
an adjunct professor at North Carolina State University.

Uri Cummings Fulcrum Microsystems, 26630 Agoura Road,
Calabasas, California 91302 (uri@fulcrummicro.com).
Dr. Cummings is the Chief Technology Officer at Fulcrum
Microsystems. In January 2000, Dr. Cummings co-founded
Fulcrum to commercialize research in high-performance VLSI
design, and he became the founding CEO. In April 2001,
Dr. Cummings recruited the current CEO of Fulcrum, and focused
on product development. He managed the first commercial chip
development of the company, a multi-gigabit switch chip, and
numerous other validation chips. He now leads the technology and
architecture direction at Fulcrum, and defined the 10-Gb Ethernet
switch chips of Fulcrum.

5 : 12 D. COHEN ET AL. IBM J. RES. & DEV. VOL. 53 NO. 5 PAPER 5 2009

