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Abstract
Machine virtualization is undoubtedly useful, but does

not come cheap. The performance cost of virtualiza-
tion, for I/O intensive workloads in particular, can be
heavy. Common approaches to solving the I/O virtual-
ization overhead focus on the I/O stack, thereby missing
optimization opportunities in the overall stack. We pro-
pose VAMOS, a novel software architecture for middle-
ware, which runs middleware modules at the hypervisor
level. VAMOS reduces I/O virtualization overhead by
cutting down on the overall number of guest/hypervisor
switches for I/O intensive workloads. Middleware code
can be adapted to VAMOS at only a modest cost, by ex-
ploiting existing modular design and abstraction layers.
Applying VAMOS to a database workload improved its
performance by up to 32%.

1 Introduction

Machine virtualization provides many benefits: it en-
ables server consolidation, makes it possible to run
legacy environments on new platforms, and helps sim-
plify system management. However, it also degrades the
performance of common workloads, particularly if they
are I/O intensive workloads.

Extensive research has been carried out in order to
reduce the virtualization (including I/O virtualization)
performance penalty, both at the hardware and soft-
ware layers. However, these works were mainly fo-
cused on improving the interaction between the hard-
ware [12, 15, 22], the hypervisor [4, 16, 17, 18] and the
operating system [9, 19, 21], avoiding changes at the ap-
plication layer.

While virtualization is quickly becoming ubiquitous,
applications remain oblivious to the changes in the un-
derlying platform. Software architects and designers still
use the same principles and models that used to apply to
non-virtualized systems for building their applications.

We argue that changes at the application layer are in-
evitable: the shift to machine virtualization everywhere
requires that we adapt our applications to cooperate with
the virtualization layer.

Adapting a nearly infinite number of applications is
not feasible. However, in practice most server applica-
tions depend on one or more middleware layers, such as
a database server, a web server, or an application server.
By adapting the middleware to virtualized platforms, we
can indirectly adapt many applications and regain lost
performance. We need to re-think the way we build mid-
dleware. Most middleware have a modular design that
already provides abstraction layers for operating system
services, such as memory management, disk or network
I/O, and CPU scheduling. We can exploit this to allow
middleware software modules to cooperate with the hy-
pervisor or run at host level, without necessitating a re-
write of the entire middleware.

This novel architecture model raises new opportunities
for performance optimizations at the middleware layer,
which do not conflict with today’s optimization at lower
layers. For example, the middleware can interact with
the hypervisor I/O sub-systems using interfaces or pro-
tocols defined at the application level. Instead of using a
para-virtual block [4, 17], network [4, 17], file system [9]
or socket [19] interfaces, a database server could use a
para-virtual SQL interface while a web server could use
a para-virtual HTTP interface. By using high level in-
terfaces we could remove the cycles spent in the hyper-
visor emulating the virtual hardware and we could also
decrease the number of transitions between the hypervi-
sor and the guest, thus improving both I/O throughput
and latency [19].

Virtual appliances and Platform as a Service (PaaS)
clouds are natural places to apply this new architecture
model, primarily because the middleware layer there is
under the control of the provider, and the adaptations will
be transparent to the customer’s applications. We can
extend the model for Infrastructure as a Service (IaaS)
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clouds, implementing the adaptations at the hypervisor
level and exposing them as optional accelerators to the
virtual machines. Assuming the customers decide to in-
stall required extensions into the virtual machines im-
age, as they might install para-virtual drivers such as
VMware-tools or virtio drivers [17], they will benefit
from the improvements.

The main contribution in this work is VAMOS, a
novel architecture for middleware running in virtual en-
vironments. Using VAMOS middleware cooperates with
the hypervisor to improve the overall application perfor-
mance. A proof of concept of VAMOS shows up to 32%
I/O performance improvements for database workloads
when compared with standard approach to I/O virtual-
ization.

2 VAMOS Architecture

In this section we present VAMOS, an architecture model
that allows cooperation between the hypervisor and the
middleware, improving I/O performance. First, we ex-
plain the causes for the virtualization overhead and then
we describe the VAMOS architecture and its advantages.

2.1 Causes of Virtualization Overhead
It is well known that virtualization has a significant over-
head [1, 5]. When we run a workload in a virtual ma-
chine, it does not get exclusive access to all the hard-
ware resources, even when we use hardware virtualiza-
tion support such as Intel VMX or AMD SVM. Usu-
ally, the VM runs directly on top of the physical CPU,
however, when a sensitive instruction is executed, the
CPU transfers the control to the hypervisor for handling.
During this handling period, the guest is temporary in-
terrupted and the hypervisor consumes precious cycles
handling the sensitive instruction, which might require
emulating virtual hardware. In addition, the transitions
have a fixed cost caused by the CPU switching between
the guest and the hypervisor contexts, and variable cost
caused by the hypervisor polluting the guest cache [5, 8].

I/O intensive applications suffer the most [18] because
they cause relatively many guest/host transitions. To get
rid of the virtualization overhead, we need to reduce the
number of transitions and/or reduce the handling cost.

2.2 Proposed Architecture
The number of abstraction layers required to access the
hardware resources and the absence of cooperation be-
tween the hypervisor and the application cause many
transitions to the hypervisor context. We can solve these
problems running part of the middleware in the hyper-
visor context. Using this approach, the middleware can

Figure 1: Comparing architecture models

cooperate with the hypervisor and obtain direct access
to the physical resources, bypassing the virtualization
layer and mitigating part of the overhead. Figure 1 com-
pares the traditional software architecture model with the
VAMOS architecture. However, for VAMOS to be feasi-
ble, we need:

1. An isolated runtime environment at the hypervi-
sor level which is capable of executing middleware
code and providing the necessary services to access
physical resources, such as network devices or disk
drives.

2. A communication channel between the middleware
running in the guest, the middleware running in the
host and the hypervisor.

3. A methodology for adapting existing middleware
code at a reasonable cost.

Today’s hypervisors, such as KVM or Xen, or hosted
hypervisors, already provide a fully operational operat-
ing system to manage the physical hardware. We can
take advantage of this fact and run middleware modules
as additional processes or runtime libraries in the host.
The cooperation between the middleware and hypervisor
can be implemented using regular mechanisms to com-
municate between user-space processes or kernel mod-
ules. In addition, the middleware can access physical
resources via the host OS services, such as file systems,
network interfaces, and virtual memory. For the guest
to host communication, we can exploit the channels im-
plemented to run para-virtualized guests [4, 17]. Alter-
natively, we can use more efficient channels, based on
polling and side core invocation techniques [2, 8, 11, 13].

Machine virtualization typically requires isolating the
physical resources from untrusted virtual machines. If
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we treat the host side middleware modules as trusted en-
tities, we can allow these modules to access physical re-
sources. However, such middleware modules might con-
tain security vulnerabilities. Thus, to minimize the ef-
fects of potential client attacks on the host, the hypervi-
sor should restrict the privileges of those modules. This
can be achieved using plugin-isolation techniques such
as Vx32 [7] or Native Client [23].

While we have the appropriate environment to run
part of middleware at the hypervisor level, we still need
a methodology to adapt existing code. Modular de-
sign [14, 20] and abstraction layers [10] are well known
techniques implemented in most if not all middleware
products to decouple different components and to ab-
stract OS services. For example, as shown in Figure 2,
MySQL abstracts and implements the I/O logic into
pluggable storage engines. Another example is Apache
Tomcat, which encapsulates the logic responsible for
handling the communication with the clients into inde-
pendent modules, called connectors. JVMs usually ab-
stract OS services to have a single cross platform core
implementation and easy to maintain platform dependent
modules [3]. We can take advantage of the modular de-
sign and run part of the middleware at the hypervisor
context. The following criteria characterize the modules
which will improve the application performance when
moved to the hypervisor:

1. Modules which interact directly with system re-
sources, generating many transitions to the hypervi-
sor context and requiring emulation of virtual hard-
ware.

2. Modules which can be easily re-factored into a
client side running in the guest and a server side
running in the host.

3. Modules which do not share state with other com-
ponents, avoiding data sharing and synchronization
between the guest and the hypervisor.

4. All the internal state used by the server side can be
discarded on live migration, checkpoint or restore
operations. In other words, internal state on the
server side is only used as a cache.

Other characteristics might also be added to the previ-
ous list, such as clients capable of caching or batching
requests, to reduce the number of transitions.

2.3 Applicability
Middleware commonly uses guest OS services to per-
form I/O operations, forcing the guest OS I/O stack
to access the relevant virtual resources. Each of these
accesses causes a transition to the hypervisor context,

Figure 2: MySQL Architecture

where the hypervisor spends prestigious cycles emulat-
ing the virtual hardware.

By running the middleware modules responsible for
I/O operations at the hypervisor level, we can reduce
the number of transitions between the guest and the hy-
pervisor as well as part of the virtual hardware emu-
lation. Instead of switching on every low-level event
such as packet sent or disk block written, we can switch
when higher-level events (e.g., an SQL query) occur.
Since higher-level events typically cause many lower-
level events, we end up switching less often, with all of
the resulting benefits. Another advantage of the proposed
approach is that we end up running less operating system
code in guest context (e.g., less file system code or net-
working code), which also consumes CPU cycles. For
example, as we show in Section 3, a database server can
run the module responsible for storing and retrieving the
persisted data at the hypervisor level and use the host OS
file system services to directly access the physical disk.
A Web Server or Application Server can run the mod-
ule responsible for communicating with the clients at the
hypervisor level and use the host OS network services to
access directly the physical network.

3 Proof of Concept

We implemented a proof of concept of VAMOS for the
MySQL database server, running on top of the KVM hy-
pervisor. As can be seen in Figure 2, within MySQL
storage engines are responsible for disk I/O. We adapted
the default storage engine, MyISAM, to access persis-
tent data using the host OS file system. MyISAM was
selected based on the criteria defined in Section 2.2.

The KVM hypervisor is implemented as a Linux ker-
nel module that extends the kernel with hypervisor ca-
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Figure 3: Virtualization Aware MySQL

pabilities, driven by a QEMU user process. KVM vir-
tual machines are therefore represented as processes in
the Linux host OS. We took advantage of this asymmet-
ric model and moved the MyISAM storage engine into
a shared library loaded by QEMU, which has direct ac-
cess to host resources such as local file systems, network
interfaces, and virtual memory.

The MyISAM client side module running in the guest
delegates requests to the server side module running in
the host. Communication between the client and the
server is done using virtio [17]. To reduce the number
of transitions from the guest to hypervisor context, we
optimized the MyISAM client module to batch multiple
requests into a single batch. This new architecture and
the data-flow path are shown in Figure 3.

Using this model the MyISAM storage engine per-
forms the I/O operations directly on the host, skipping
the virtual hardware emulation, the guest OS VFS, file
system, and block device, shortening overall code path
lengths and reducing the number of transitions.

We analyzed MySQL performance by measuring the
time needed to insert rows of different sizes to a database
table. We used the following configurations: MySQL
with emulated drivers (baseline), MySQL with para-
virtualized drivers, VAMOS-MySQL without request
batching, and VAMOS-MySQL with request batching.
Figure 4 shows the results for different workloads. The
Y-axis shows the normalized runtime improvement com-
pared to the baseline. The X-axis shows the size of the
database rows inserted for each workload. We can see
that VAMOS improves performance for all the work-
loads. However, for workloads with row sizes up to
16KB, using only para-virtualized drivers we can ob-
tain a better improvement. For sizes starting from 32KB
VAMOS does better than para-virtualized drivers.
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Figure 4: VAMOS MySQL runtime improvement for
different workloads
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Figure 5: Cycles distribution between guest and host

Each of these workloads represent the trade-off be-
tween the amount of data the server side storage engine
reads and writes to the file system and the number of
transitions generated by the client side. In other words,
when the developers adapt the middleware code they
need to choose an interface that minimizes the number
of guest/host transitions. Our implementation required
too many transitions for small rows. We believe VAMOS
can outperform para-virtual I/O even for small rows, by
optimizing the code and selecting an alternative interface
for the storage engine that requires less transitions from
the guest to the hypervisor context.

Figure 5 compares VAMOS-MySQL with the tradi-
tional MySQL version running in an unmodified guest.
We show, for each row size, the number of cycles spent
in the guest and the number of cycles spent in the host.
It is interesting to note that the number of cycles in the
guest does not change, proving that the execution of the
guest was not affected, leading us to believe that the stor-
age engine consumes relatively few cycles. By moving
the storage engine to the hypervisor, we reduce overall
hypervisor overhead. This is because VAMOS reduced
the number of transitions and part of the virtual hardware

4



emulation, which overall consumed more cycles than the
storage engine itself.

4 Discussion

Running additional code at the host level raises new con-
cerns with regards to the complexity of the hypervisor
and potential security risks. We believe that with an ap-
propriate design the hypervisor code can remain clean
and simple, and the middleware modules could be loaded
as isolated plugins. In our proof of concept, the KVM
kernel module itself required no changes. The QEMU
user-space process required only two minor changes: to
load the middleware shared library and to delegate re-
quests coming from the guest over the virtio channel.

As described in Section 2.2, to neutralize security vul-
nerabilities the hypervisor should restrict the privilege of
the middleware modules. In the case of KVM, each vir-
tual machine has a dedicated QEMU instance and mid-
dleware modules run in user-space as QEMU plugins.
The first level of defense against compromised middle-
ware components is for QEMU to use a plugin-isolation
mechanism[7, 23]. The second level of defense is to
use the standard Linux access control mechanisms (e.g.,
SELinux, AppArmor, seccomp, chroot) to limit QEMU
instances from accessing different resources depending
on the virtual machine being run. For example, each
QEMU instance could be restricted to only access the
parts of the file system that are relevant to the virtual ma-
chine it runs.

Virtualization systems often struggle to find the cor-
rect balance between guest transparency and perfor-
mance (e.g., para-virtualized I/O reduces guest trans-
parency but increases performance). While VAMOS im-
proves I/O performance, it also ties the guest virtual ma-
chine closer with the hypervisor and makes the resulting
system more complex. We believe that there is no single
right trade-off, and VAMOS presents an interesting and
useful design point in the spectrum of possible trade-offs.

5 Related Work

Para-virtualization is commonly used to reduce the virtu-
alization overhead. Previous works [4, 8, 17] show how
to para-virtualize devices drivers to improve the I/O per-
formance, however, they still use low level interfaces to
interact with the hypervisor which cause transitions and
require emulation of virtual hardware.

SR-IOV devices [6, 12] improve the I/O performance
by directly assigning hardware resources to the guest, by-
passing part of the virtualization layer. This approach re-
quires special hardware and does not completely mitigate
the overhead caused by the transitions to the hypervisor

context. In addition, using dedicated hardware, the hy-
pervisor software lose the ability to intercept and control
the data flow path.

The use of higher abstraction levels to interact with
the hypervisor was also proposed in Virt-FS [9], Libra [3]
and Scalable I/O [19]. Virt-FS presents a para-virtualized
file system. While it shares some concepts with VAMOS,
it still limits the abstraction level of guest/host interac-
tion to inside the guest kernel, whereas VAMOS takes
it up into userspace. Libra is a small operating system
capable of running only an adapted JVM, taking advan-
tage of the host OS services to improve the workloads
performance. VAMOS does not require changes in the
guest OS and take advantage of the host OS by running
selected middleware modules directly at the hypervisor
level, minimizing the adaption cost and re-using existing
code. Scalable I/O presents a totally new architecture for
the I/O stack, requiring major software modifications and
targeting only I/O performance.

6 Conclusions and Future Work

Virtualization has a performance penalty caused by the
overhead of transitions between the guest and the host
context. In general, I/O intensive workloads are the
most affected, because they create a significant number
of transitions and require emulation of virtual hardware.

VAMOS is a new approach for mitigating I/O vir-
tualization overhead by breaking free from traditional
boundaries and running part of the middleware directly at
the hypervisor level. By exploiting existing modular de-
signs and abstraction layers, middleware can be adapted
to run at the hypervisor level with modest cost. Since
there are many different middleware, we are currently
analyzing whether it is possible to create a layer of com-
mon services at the hypervisor level, shared across dif-
ferent middleware.
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