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Abstract

The IOMMU allows the OS to encapsulate I/O devices
in their own virtual memory spaces, thus restricting their
DMAs to specific memory pages. The OS uses the IOMMU
to protect itself against buggy drivers and malicious/errant
devices. But the added protection comes at a cost, degrading
the throughput of I/O-intensive workloads by up to an order
of magnitude. This cost has motivated system designers to
trade off some safety for performance, e.g., by leaving stale
information in the IOTLB for a while so as to amortize costly
invalidations.

We observe that high-bandwidth devices—like network
and PCIe SSD controllers—interact with the OS via circular
ring buffers that induce a sequential, predictable workload.
We design a ring IOMMU (rIOMMU) that leverages this
characteristic by replacing the virtual memory page table hi-
erarchy with a circular, flat table. A flat table is adequately
supported by exactly one IOTLB entry, making every new
translation an implicit invalidation of the former and thus re-
quiring explicit invalidations only at the end of I/O bursts. Us-
ing standard networking benchmarks, we show that rIOMMU
provides up to 7.56x higher throughput relative to the base-
line IOMMU, and that it is within 0.77–1.00x the throughput
of a system without IOMMU protection.

Categories and Subject Descriptors B.3.2 [memory struc-
tures]: design styles—virtual memory; B.4.2 [I/O and data
communications]: I/O devices—channels and controllers;
D.4.2 [operating systems]: storage management—virtual
memory, allocation/deallocation strategies

General Terms design, experimentation, performance

Keywords I/O memory management unit
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1. Introduction

I/O device drivers initiate direct memory accesses (DMAs)
to asynchronously move data from their devices into memory
and vice versa. In the past, DMAs used physical memory
addresses. But such unmediated access made systems vul-
nerable to (1) rogue devices that might perform errant or
malicious DMAs [9, 12, 28, 32, 52], and to (2) buggy drivers
that account for most operating system (OS) failures and
might wrongfully trigger DMAs to arbitrary memory loca-
tions [8, 13, 23, 36, 47, 50]. Subsequently, all major chip
vendors introduced I/O memory management units (IOM-
MUs) [3, 7, 25, 28], which allow DMAs to execute with I/O
virtual addresses (IOVAs). The IOMMU translates the IOVAs
into physical addresses according to I/O page tables that are
setup by the OS. The OS thus protects itself by adding a trans-
lation just before the corresponding DMA, and by removing
the translation right after [11, 16, 51]. We explain in detail
how the IOMMU is implemented and used in §2.

DMA protection comes at a cost that can be substantial in
terms of performance [4, 10, 51], for newer, high-throughput
I/O devices like 10/40 Gbps network controllers (NICs),
which can deliver millions of packets per second. Our mea-
surements indicate that using DMA protection with such
devices can reduce the throughput by up to 10x. This penalty
has motivated OS developers to trade off some protection for
performance. For example, when employing the “deferred”
IOMMU mode, the Linux kernel defers IOTLB invalidations
for a short while instead of performing them immediately,
because invalidations are slow. Later, the kernel processes
the accumulated invalidations en masse by flushing the entire
IOTLB, thus amortizing the overhead at the risk of allowing
devices to erroneously utilize stale IOTLB entries. While this
tradeoff can double the performance relative to the stricter
IOMMU mode, the throughput is still 5x lower than when the
IOMMU is disabled. We analyze and model the overheads
associated with using the IOMMU in §3.

We argue that the degraded performance is largely due to
the IOMMU needlessly replicating the design of the regular
MMU, which is based on hierarchical page tables. Our claim
pertains high-bandwidth I/O devices, such as NICs and PCIe



SSD drives, which utilize circular “ring” buffers to interact
with the OS. A ring is an array of descriptors that the OS
driver sets when initiating DMAs. Descriptors encapsulate the
DMA details, including the associated IOVAs. Importantly,
ring semantics dictate that (1) the driver work through the
ring in order, one descriptor after the other, and that (2) the
I/O device process these descriptors in the same order. Thus,
IOVAs are short-lived and the sequence in which they are
used is linearly predictable: each IOVA is allocated, placed
in the ring, used in turn, and deallocated.

We propose a ring IOMMU (rIOMMU) that supports
this pervasive sequential model using flat (1D) page tables
that directly correspond to the nature of rings. RIOMMU
has three advantages over the baseline IOMMU that signifi-
cantly reduce the overhead of DMA protection. First, build-
ing/destroying an IOVA translation in a flat table is quicker
than in a hierarchical structure. Second, (de)allocation of
IOVAs—the actual integers serving as virtual addresses—is
faster, as IOVAs are indices of flat tables in our design. Finally,
the frequency of IOTLB invalidations is substantially reduced,
because the rIOMMU designates only one IOTLB entry per
ring. One is enough because IOVAs are used sequentially,
one after the other. Consequently, every translation inserted
to the IOTLB removes the previous translation, eliminating
the need to explicitly invalidate the latter. And since the OS
handles high-throughput I/O in bursts, explicit invalidations
become rare. We describe rIOMMU in §4.

We evaluate the performance of rIOMMU using network-
ing benchmarks and find that it improves throughput by 1.00—
7.56x, shortens latency by 0.80–0.99x, and reduces CPU con-
sumption by 0.36–1.00x relative to the existing IOMMU. Our
fastest rIOMMU variant is within 0.77–1.00x the throughput,
1.00–1.04x the latency, and 1.00–1.22x the CPU consumption
of a system that disables the IOMMU entirely. We describe
our experimental evaluation in §5.

2. Background

2.1 Operating System DMA Protection

The role the IOMMU plays for I/O devices is similar to
the role the regular MMU plays for processes, as illustrated
in Figure 1. Processes typically access the memory using
virtual addresses, which are translated to physical addresses
by the MMU. Analogously, I/O devices commonly access the
memory via DMAs associated with IOVAs. The IOVAs are
translated to physical addresses by the IOMMU.

The IOMMU provides inter- and intra-OS protection
[4, 49, 51, 53]. Inter-OS protection is applicable in virtual
setups. It allows for “direct I/O”, where the host assigns
a device directly to a guest virtual machine (VM) for its
exclusive use, largely removing itself from the guest’s I/O
path and thus improving its performance [22, 36]. In this
mode of operation, the VM directly programs device DMAs
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Figure 1. The IOMMU is for devices what the MMU is for
processes.

using its notion of (guest) “physical” addresses. The host
uses the IOMMU to redirect these accesses to where the
VM memory truly resides, thus protecting its own memory
and the memory of the other VMs. With inter-OS protection,
IOVAs are mapped to physical memory locations infrequently,
typically only upon such events as VM creation and migration.
Such mappings are therefore denoted static or persistent [51];
they are not the focus of this paper.

Intra-OS protection allows the OS to defend against the
DMAs of errant/malicious devices [9, 12, 17, 28, 32, 52] and
of buggy drivers, which account for most OS failures [8, 13,
23, 36, 47, 50]. Drivers and their I/O devices can perform
DMAs to arbitrary memory addresses, and IOMMUs allow
OSes to protect themselves (and their processes) against such
accesses, by restricting them to specific physical locations.
In this mode of work, map operations (of IOVAs to physical
addresses) and unmap operations (invalidations of previous
maps) are frequent and occur within the I/O critical path, such
that each DMA is preceded and followed by the mapping
and unmapping of the corresponding IOVA [32, 40]. Due
to their short lifespan, these mappings are denoted dynamic
[11], streaming [16] or single-use [51]. This strategy of
IOMMU-based intra-OS protection is the focus of this paper.
It is recommended by hardware vendors [24, 28, 32] and
employed by operating systems [6, 11, 16, 26, 38, 51].1 It
is applicable in non-virtual setups where the OS has direct
control over the IOMMU. It is likewise applicable in virtual
setups where IOMMU functionality is exposed to VMs
via paravirtualization [10, 36, 45, 51], full emulation [4],
and, more recently, hardware support for nested IOMMU
translation [3, 28].

2.2 IOMMU Design and Implementation

Given a target memory buffer of a DMA, the OS associates
the physical address (PA) of the buffer with an IOVA. The
OS maps the IOVA to the PA by inserting the IOVA⇒PA

1 For example, the DMA API of Linux notes that “DMA addresses should
be mapped only for the time they are actually used and unmapped after
the DMA transfer” [40]. In particular, “once a buffer has been mapped, it
belongs to the device, not the processor. Until the buffer has been unmapped,
the [OS] driver should not touch its contents in any way. Only after [the
unmap of the buffer] has been called is it safe for the driver to access the
contents of the buffer” [16].
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Figure 2. IOVA translation with the Intel IOMMU.

translation to the IOMMU data structures. Figure 2 depicts
these structures as implemented by Intel x86-64 [28]. The PCI
protocol dictates that each DMA operation is associated with
a 16-bit request identifier comprised of a bus-device-function
triplet that uniquely identifies the corresponding I/O device.
The IOMMU uses the 8-bit bus number to index the root table
in order to retrieve the physical address of the context table.
It then indexes the context table using the 8-bit concatenation
of the device and function numbers. The result is the physical
location of the root of the page table hierarchy that houses all
of the IOVA⇒PA translations of that I/O device.

The purpose of the IOMMU page table hierarchy is similar
to that of the MMU hierarchy: recording the mapping from
virtual to physical addresses by utilizing a 4-level radix tree.
Each 48-bit (I/O) virtual address is divided into two: the 36
high-order bits, which constitute the virtual page number, and
the 12 low-order bits, which are the offset within the page.
The translation procedure applies to the virtual page number
only, converting it into a physical frame number (PFN) that
corresponds to the physical memory location being addressed.
The offset is the same for both physical and virtual pages.

Let Tj denote a page table in the j-th radix tree level for
j = 1,2,3,4, such that T1 is the root of the tree. Each Tj is
a 4KB page containing up to 29 = 512 pointers to physical
locations of next-level Tj+1 tables. Last-level—T4—tables
contain PFNs of target buffer locations. Correspondingly, the
36-bit virtual page number is split into a sequence of four 9-bit
indices i1, i2, i3 and i4, such that i j is used to index Tj in order
to find the physical address of the next Tj+1 along the radix
tree path. Logically, in C pointer notation, T1[i1][i2][i3][i4] is
the PFN of the target memory location.

Similarly to the MMU translation lookaside buffer (TLB),
the IOMMU caches translations using an IOTLB, which it
fills on-the-fly as follows. Upon an IOTLB miss, the IOMMU
hardware hierarchically walks the page table as described
above, and it inserts the IOVA⇒PA translation to the IOTLB.
IOTLB entries are invalidated explicitly by the OS as part of
the corresponding unmap operation.
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Figure 3. The driver drives its device via a ring. With an
IOMMU, register/target pointers are IOVAs.

An IOMMU table walk fails if a matching translation was
not previously established by the OS, a situation which is log-
ically similar to encountering a null pointer value during the
walk. A walk additionally fails if the DMA being processed
conflicts with the read/write permission bits found within the
page table entries along the traversed radix tree path. We note
in passing that, at present, in contrast to MMU memory ac-
cesses, DMAs are typically not restartable. Namely, existing
systems usually do not support “I/O page faults”, and hence
the OS cannot populate the IOMMU page table hierarchy
on demand. Instead, IOVA translations of valid DMAs are
expected to be successful, and the corresponding pages must
be pinned to memory. (Albeit I/O page fault standardization
does exist [42].)

2.3 I/O Devices Employing Ring Buffers

Many I/O devices—notably NICs and disk drives—deliver
their I/O through one or more producer/consumer ring buffers.
A ring is an array shared between the OS device driver
and the associated device, as illustrated in Figure 3. The
ring is circular in that the device and driver wrap around
to the beginning of the array when they reach its end. The
entries in the ring are called DMA descriptors. Their exact
format and content vary between devices, but they specify at
least the address and size of the corresponding target buffers.
Additionally, the descriptors commonly contain status bits
that help the driver and the device to synchronize.

Devices must also know the direction of each requested
DMA, namely, whether the data should be transmitted from
memory (into the device) or received (from the device) into
memory. The direction can be specified in the descriptor,
as is typical for disk controllers. Or the device can employ
different rings for receive and transmit activity, in which case
the direction is implied by the ring. The receive and transmit
rings are denoted Rx and Tx, respectively. NICs employ at
least one Rx and one Tx per port. They may employ multiple
Rx/Tx rings per port to promote scalability, as different rings
can be handled concurrently by different cores.



Upon initialization, the OS device driver allocates the rings
and configures the I/O device with the ring sizes and base
locations. For each ring, the device and driver utilize a head
and a tail pointers to delimit the ring content that can be used
by the device: [head, tail). The device iteratively consumes
(removes) descriptors from the head, and it increments the
head to point to the next descriptor to be used next. Similarly,
the driver adds descriptors to the tail, incrementing the tail to
point to the entry it will use subsequently.

A device asynchronously informs its OS driver that data
was transmitted or received by triggering an interrupt. The
device coalesces interrupts when their rate is high. Upon
receiving an interrupt, the driver of a high-throughput device
handles the entire I/O burst. Namely, it sequentially iterates
through and processes all the descriptors whose correspond-
ing DMAs have completed,

3. Cost of Safety

This section enumerates the overhead components involved
in using the IOMMU in the Linux/Intel kernel (§3.1). It
experimentally quantifies the overhead of each component
(§3.2). And it provides and validates a simple performance
model that allows us to understand how the overhead affects
performance and to assess the benefits of reducing it (§3.3).

3.1 Overhead Components

Suppose that a device driver that employs a ring wants to
transmit or receive data from/to a target buffer. Figure 4 lists
the actions it carries out. First, it allocates the target buffer,
whose physical address is denoted p (1). (For simplicity, let
us assume that p is page aligned.) It pins p to memory and
then asks the IOMMU driver to map the buffer to some IOVA,
such that the I/O device would be able to access p (2). The
IOMMU driver invokes its IOVA allocator, which returns
a new IOVA v—an integer that is not associated with any
other page currently accessible to the I/O device (3). The
IOMMU driver then inserts the v⇒p translation to the page
table hierarchy of the I/O device (4), and it returns v to the
device driver (5). Finally, when updating the corresponding
ring descriptor, the device driver uses v as the address for the
target buffer of the associated DMA operation (6).

Assume that the latter is a receive DMA. Figure 5 details
the activity taking place when the I/O device gets the data.
The device reads the DMA descriptor through its head register.
The address held by the head is an IOVA, so it is intercepted
by the IOMMU (1). The IOMMU consults its IOTLB to find
a translation for the head IOVA. If the translation is missing,
the IOMMU walks the page table hierarchy of the device
to resolve the miss (2). Equipped with the head’s physical
address, the IOMMU translates the head descriptor for of the
device (3). The head descriptor specifies that v (IOVA defined
above) is the address of the target buffer (4), so the device
writes the received data to v (5). The IOMMU intercepts v,
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Figure 4. The I/O device driver maps an IOVA v to a physi-
cal target buffer p. It then assigns v to the DMA descriptor.
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Figure 6. After the DMA completes, the I/O device driver
unmaps v and passes p to a higher-level software layer.

walks the page table if the v⇒p translation is missing (6),
and redirects the received data to p (7).

Figure 6 shows the actions the device driver carries out
after the DMA operation is completed. The device driver asks
the IOMMU driver to unmap the IOVA v (1). In response,
the IOMMU driver removes the v⇒p mapping from the page
table hierarchy (2), purges the mapping from the IOTLB (3),
and deallocates v (4). (The order of these actions is important.)
Once the I/O device can no longer access p, it is safe for the
device driver to hand the buffer to higher levels in the software
stack for further processing (5).

3.2 Protection Modes and Measured Overhead

We experimentally quantify the overhead components of the
map and unmap functions—outlined in Figures 4 and 6—of
the IOMMU driver. To this end, we execute the standard Net-
perf TCP stream benchmark, which attempts to maximize
network throughput between two machines over a TCP con-
nection. (The experimental setup is detailed in §5.)



function component strict strict+ defer defer+

map iova alloc 3986 92 1674 108
page table 588 590 533 577
other 44 45 44 42
sum 4618 727 2251 727

unmap iova find 249 418 263 454
iova free 159 62 189 57
page table 438 427 471 504
iotlb inv 2127 2135 9 9
other 26 25 205 216
sum 2999 3067 1137 1240

Table 1. Average cycles breakdown of the (un)map func-
tions of the IOMMU driver for different protection modes.

Strict Protection We begin by profiling the Linux kernel in
its safer IOMMU mode, denoted strict, which strictly follows
the map/unmap procedures described in §3.1. Table 1 shows
the average duration of the components of these procedures
in cycles. The strict/map breakdown indicates that its most
costly component is, surprisingly, IOVA allocation (Step 3
in Figure 4). Upon further investigation, we found that the
reason for this high cost is a nontrivial pathology in the Linux
IOVA allocator that regularly causes some allocations to be
linear in the number of currently allocated IOVAs. We were
able to come up with a more efficient IOVA allocator, which
consistently allocates/frees in constant time [37]. We denote
this optimized IOMMU mode—which is quicker than strict
but equivalent to it in terms of safety—as strict+. Table 1
shows that strict+ indeed reduces the allocation time from
nearly 4,000 cycles to less than 100.

The remaining dominant strict(+)/map overhead is the
insertion of the IOVA to the IOMMU page table (Step 4
in Figure 4). The 500+ cycles of the insertion are due to
explicit memory barriers and cacheline flushes that the driver
performs when updating the hierarchy. Flushes are required,
as the I/O page walk is incoherent with the CPU caches on
our system. (This is common nowadays; Intel started shipping
servers with coherent I/O page walks only recently.)

Focusing on the unmap components of strict/strict+, we
see that finding the unmapped IOVA in the allocator’s data
structure is costlier in strict+ mode. The reason: like the
baseline strict, strict+ utilizes a red-black tree to hold the
IOVAs. But the strict+ tree is fuller, so the logarithmic search
is longer. Conversely strict+/free (Step 4 in Figure 6) is done
in constant time, rather than logarithmic, so it is quicker.
The other unmap components are: removing the IOVA from
the page tables (Step 2 in Figure 6) and the IOTLB (Step
3). The removal takes 400+ cycles, which is comparable to
the duration of insertion. IOTLB invalidation is by far the
slowest unmap component at around 2,000 cycles; this result
is consistent with previous work [4, 53].

Deferred Protection In order to reduce the high cost of
invalidating IOTLB entries, the Linux deferred protection
mode relaxes strictness somewhat, trading off some safety

for performance. Instead of invalidating entries right away,
the IOMMU driver queues the invalidations until 250 freed
IOVAs accumulate. It then processes all of them in bulk by
invalidating the entire IOTLB. This approach affects the cost
of (un)mapping in two ways, as shown in Table 1 in the defer
and defer+ columns. (Defer+ is to defer what strict+ is to
strict.) First, as intended, it eliminates the cost of invalidating
individual IOTLB entries. And second, it reduces the cost of
IOVA allocation in the baseline deferred mode as compared
to strict (1,674 vs. 3,986), because deallocating IOVAs in
bulk reduces somewhat the aforementioned linear pathology.

The drawback of deferred protection is that the I/O device
might erroneously access target buffers through stale IOTLB
entries after the buffers have already been handed back to
higher software stack levels (Step 5 in Figure 6). Notably, at
this point, the buffers could be (re)used for other purposes.

3.3 Performance Model

Let C denote the average number of CPU cycles required
to process one packet. Figure 7 shows C for each of the
aforementioned IOMMU modes in our experimental setup.
The bottommost horizontal grid line shows Cnone, which is
C when the IOMMU is turned off. We can see, for example,
that Cstrict is nearly 10x higher than Cnone.

Our experimental setup employs a NIC that uses two
target buffers per packet: one for the header and one for the
data. Each packet thus requires two map and two unmap
invocations. So the processing of the packet includes: two
IOVA (de)allocations; two page table insertions and deletions;
and two invalidations of IOTLB entries. The corresponding
aggregated cycles are respectively depicted as the three top
stacked sub-bars in the figure. The bottom, “other” sub-bar
embodies all the rest of the packet processing activity, notably
TCP/IP and interrupt processing. As noted, the deferred
modes eliminate the IOTLB invalidation overhead, and the
“+” modes reduce the overhead of IOVA (de)allocation. But
even Cde f er+ (the most performant mode, which introduces a
vulnerability window) is still over 3.3x higher than Cnone.

We find that the way the value of C affects the overall
throughput of Netperf is simple and intuitive. Specifically,
if S denotes the cycles-per-second clock speed of the core,
then S/C is the number of packets the core can handle per
second. And since every Ethernet packet carries 1,500 bytes,
the throughput of the system in Gbps should be Gbps(C) =
1500 byte× 8 bit× S

C , assuming S is given in GHz. Figure
8 shows that this simple model (thick line) is accurate. It
coincides with the throughput obtained when systematically
lengthening Cnone using a carefully controlled busy-wait loop
(thin line). It also coincides with the throughput measured
under the different IOMMU modes (cross points).

Consequences As our model is accurate, we conclude that
the translation activity carried out by the IOMMU (as de-
picted in Figure 5) does not affect the performance of the
system, even when servicing demanding benchmarks like
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Netperf. Instead, the cost of IOMMU protection is entirely
determined by the number of cycles the core spends creating
and destroying IOVA mappings. Consequently, we can later
simulate and accurately assess the expected performance of
our proposed IOMMU by likewise spending cycles; there is
no need to simulate the actual IOMMU hardware circuitry
external to the core. A second conclusion rests on the un-
derstanding that throughput is proportional to 1/C. If C is
high (right-hand side of Figure 8), incrementally improving
it would make little difference. The required change must be
significant enough to bring C to the proximity of Cnone.

4. Design

Our goal is to design rIOMMU—an efficient IOMMU for
devices that employ rings. We aim to substantially reduce
all IOVA-related overheads: (de)allocation, insertion/deletion
to/from the page table hierarchy, and IOTLB invalidation
(see Figure 7). We base our design on the observation that
ring semantics (§2.3) dictate a well-defined memory mapping
order, caused by the fact that the OS maps ring entries and
shortly after unmaps them in the exact same order.

We contend that the x86 hierarchical structure of page
tables is poorly suited for the ring model. For each DMA, the
OS has to walk the hierarchical page table in order to map the
associated IOVA. Then, the device faults on the IOVA and so
the IOMMU must walk the table too. Shortly after, the OS
has to walk the table yet again in order to unmap the IOVA.
Contributing to this overhead are the aforementioned memory
barriers and cacheline flushes required for propagating page
table changes.

In a nutshell, we propose to replace the table hierarchy
with a per-ring flat page table (1D array). IOVAs would consti-
tute indices of the array, thus eliminating IOVA (de)allocation
overheads. Not having to walk a hierarchical structure would
additionally reduce the table walk cost. In accordance with
Figure 9e, we propose an IOTLB that holds at most one entry
per ring, such that each table walk removes the previous IOVA
translation. Consequently, given a burst of unmaps, only the

last IOVA in the sequence requires explicit invalidation. We
further discuss this point later on.

We next describe the rIOMMU design in detail. There
are several ways to realize the rIOMMU concept, and our
description should be viewed as an example. Contrary to
the baseline IOMMU, which provides protection in page
granularity, our rIOMMU facilitates finer-grained protection
of any specified size. This property is appealing because
different target buffers can, and often do, reside on the same
page. Therefore, the existing IOMMU allows the I/O device
to access an already unmapped buffer if the page in which it
resides additionally houses a still-mapped buffer. In contrast,
rIOMMU eliminates this type of vulnerability.

Data Structures Figure 9 defines the rIOMMU data struc-
tures. The rDEVICE (Figure 9a) is to the rIOMMU what the
root page table is to the baseline IOMMU. It is uniquely asso-
ciated with a bus-device-function (bdf) triplet and is pointed
to by the context table (Figure 2). As noted, each DMA carries
with it a bdf, allowing the rIOMMU to find the corresponding
rDEVICE when needed. The rDEVICE consists of a physi-
cal pointer to an array of rRING structures (Figure 9b) and
a matching size. Each rRING entry represents a flat page ta-
ble. It likewise contains the table’s physical address and size.
The OS associates with each rRING: (1) a tail pointing to the
next entry to be allocated in the flat table, and (2) the current
number of valid mappings in the table. The latter two are not
architected and are unknown to the rIOMMU hardware. We
include them in rRING to simplify the description.

Each ring buffer of the I/O device is associated with two
rRINGs in the rDEVICE array. The first corresponds to IOVAs
pointing to the device ring buffer (Step 1 of Figure 5 for trans-
lating the head register). The second corresponds to IOVAs
that the device finds within its ring descriptors (Step 5 in
Figure 5 for translating target buffers). The IOVAs that reside
in the first flat table are mapped as part of the I/O device
initialization. They will be unmapped only when the device
is brought down, as the device rings are always accessible to
the device. IOVAs residing in the second flat table are asso-



a) struct rDEVICE {
u16 size;
rRING rings[size];

};

b) struct rRING {
u18 size;
rPTE ring[size];
u18 tail; // SW only
u18 nmapped; // SW only

};

c) struct rPTE {
u64 phys_addr;
u30 size;
u02 dir;
u01 valid;
u31 unused;

}; // = 128bit

d) struct rIOVA {
u30 offset;
u18 rentry;
u16 rid;

}; // = 64bit

e) struct rIOTLB_entry {
u16 bdf;
u16 rid;
u18 rentry;
rPTE rpte;
rPTE next;

};

Figure 9. The rIOMMU data structures. rDEVICE is used only by hardware. Last two fields of rRING are used only by software.

ciated with DMA target buffers; they are mapped/unmapped
repeatedly and are valid only while their DMA is in flight.

The flat table pointed to by rRING.ring is an array of
rPTE structures (Figure 9c). An rPTE consists of the physical
address and size associated with the corresponding IOVA;
two bits that specify the DMA direction, which can be from
the device, to it, or both; and a bit that indicates whether
the rPTE (and thus the corresponding IOVA) are valid. The
physical address need not be page aligned and the associated
size can have any value, allowing for fine-grained protection.

The rIOVA structure (Figure 9d) defines the format of IO-
VAs. As noted, every DMA has a bdf that uniquely identifies
its rDEVICE. The rIOVA.rid (ring ID) serves as an index to the
corresponding rDEVICE.rings array, and thus it uniquely iden-
tifies the rRING of the rIOVA. Likewise, rIOVA.rentry serves
as an index to the rRING.ring array, and thus it uniquely iden-
tifies the rPTE of the rIOVA. The target address of the rIOVA
is computed by adding rIOVA.offset to rPTE.phys_addr.

The data structures discussed so far are used by both
software and hardware. They are setup by the OS and utilized
by the rIOMMU to translate rIOVAs. The last one (Figure 9e)
is a hardware-only structure, representing one rIOTLB entry.
The combination of its first two fields (bdf+rid) uniquely
identifies a rRING flat page table, which we denote as T .
The rIOTLB utilizes at most one rIOTLB_entry per T . The
combination of the first three fields (bdf+rid+rentry) uniquely
identifies T ’s “current” rPTE—the PTE associated with the
most recently translated rIOVA that belongs to T . The current
rPTE is cached by rIOTLB_entry.rpte (holds a copy). The
rIOTLB_entry.next field may or may not contain a prefetched
copy of T ’s subsequent rPTE. (Our design does not depend
on the latter field and works just as well without it.)

Hardware The rtranslate routine (Figure 10 top/left) out-
lines how rIOMMU translates a rIOVA to a physical address.
First, it searches for e, the rIOTLB_entry of the rRING that is
associated with the rIOVA. (Recall that there is only one such
entry per rRING.) If e is missing from the rIOTLB, rIOMMU
walks the table using the data structures defined above, finds
the rPTE, and inserts to the rIOTLB a matching entry. Doing
the table walk ensures that e.rpte is the rPTE of the given
rIOVA. However, if e was initially found in the rIOTLB, then
e and the rIOVA might mismatch. RIOMMU therefore com-
pares the rentry numbers of e and the IOVA, and it updates e if
they are different. Now that e is up-to-date, rIOMMU checks
that the direction of the DMA is permitted according to the
rPTE. It also checks that the offset of the IOVA is in range,

namely, smaller than the associated rPTE.size. Violating these
conditions constitutes an error, causing rIOMMU to trigger
an I/O page fault (IOPF). IOPFs are not expected to occur
(drivers pin target buffers to memory), and OSes typically
reinitialize the I/O device if they do. If no violation is de-
tected, rIOMMU finally performs the translation by adding
the offset of the IOVA to rPTE.phys_addr.

The rtable_walk routine (Figure 10 top/right) ensures
that the rIOVA complies with the rIOMMU data structure
limits as well as points to a valid rPTE. Noncompliance
might be the result of, e.g., an errant DMA or a buggy driver.
After validation, rtable_walk initializes the rIOTLB_entry in
a straightforward manner based on the rIOVA and its rPTE.
It additionally attempts to prefetch the subsequent rPTE by
invoking rprefetch (Figure 10 bottom/right), which succeeds
if the next rPTE is valid. Prefetching can be asynchronous.

The riotlb_entry_sync routine (Figure 10 bottom/left) is
used by rtranslate to synchronize e (the rIOTLB_entry) with
the current IOVA. The two become unsynchronized, e.g.,
whenever the device handles a new DMA descriptor. The
required rPTE can be found in e.next if prefetching was
previously successful, in which case the routine assigns e.next
to e.rpte. Otherwise, it uses rtable_walk to fetch the needed
rPTE. Finally, it attempts to prefetch the subsequent rPTE.

Software The (un)map functions comprising the rIOMMU
OS driver are shown in Figure 11. Their prototypes are
logically similar to the associated Linux functions from the
baseline IOMMU OS driver (Figures 4 and 6), with minor
adjustments. The map flow corresponds to Figure 4. It gets a
device, a ring ID, a physical address to be mapped, and the
associated size and direction of the DMA. The first part of
the code allocates a ring entry rPTE at the ring’s tail and then
updates the tail/nmapped fields accordingly. This allocation—
which consists of incrementing two integers—is analogous
to the costly IOVA allocation of baseline Linux.

The second part of map initializes the newly allocated rPTE.
When the rPTE is ready, the map function invokes sync_mem,
which ensures that the rPTE memory updates are visible to the
rIOMMU. This part of the code is analogous to walking and
updating the page table hierarchy of the baseline IOMMU, but
it is simpler since the page table is flat. The return statement
of the map function packs the rentry index and its ring ID
into an IOVA as dictated by the rIOVA data structure (Figure
9d). The offset is always set to be 0 by the rIOMMU driver.
Callers of map can later manipulate the offset as they please,



u64 rtranslate(u16 bus_dev_func, rIOVA iova, u2 dir) {
rIOTLB_entry e = riotlb_find( bus_dev_func, iova.rid );
if( ! e ) {

e = rtable_walk( bus_dev_func, iova );
riotlb_insert( e );

}
if( e.rentry != iova.rentry )

riotlb_entry_sync( bus_dev_func, iova, e );
if( iova.offset >= e.rpte.size || ! (e.rpte.dir & dir) )

io_page_fault();
return e.rpte.phys_addr + iova.offset;

}
void riotlb_entry_sync(u16 bus_dev_func, rIOVA iova,

rIOTLB_entry e)
{

rDEVICE d = get_domain( bus_dev_func );
u18 next = (e.rentry + 1) % d.rings[e.rid].size;

if( e.next.valid && (iova.rentry===next) ) {
e.rpte = e.next; e.rentry = next;
e.next.valid = 0;

} else
e = rtable_walk( bus_dev_func, iova );

rprefetch( d, e );
}

rIOTLB_entry
rtable_walk(u16 bus_dev_func, rIOVA iova)
{

rDEVICE d = get_domain( bus_dev_func );
if( iova.rid >= d.size ||

iova.rentry >= d.rings[iova.rid].size ||
! d.rings[iova.rid].ring[iova.rentry].valid )
io_page_fault();

rIOTLB_entry e;
rRING r = d.rings[iova.rid];
e.bdf = bus_dev_func;
e.rid = iova.rid;
e.rentry = iova.rentry;
e.rpte = r.ring[e.rentry]; // copy
rprefetch( d, e );
return e;

}
void rprefetch(rDEVICE d, rIOTLB_entry e) // async
{

rRING r = d.rings[e.rid];
u18 next = (e.rentry + 1) % r.size;
if( r.size > 1 && r.ring[next].valid )

e.next = r.ring[next]; // copy
}

Figure 10. Outline of the rIOMMU hardware logic. All DMAs are carried out with IOVAs that are translated by rtranslate.

rIOVA map(rDEVICE d, u16 rid, u64 pa, u30 size, u2 direction)
{

rRING r = d.rings[rid];
locked { if( r.nmapped == r.size ) return OVERFLOW;

u18 t = r.tail;
r.tail = (r.tail + 1) % r.size;
r.nmapped++; }

r.ring[t].phys_addr = pa;
r.ring[t].size = size;
r.ring[t].dir = direction;
r.ring[t].valid = 1;
sync_mem( & r.ring[t] );
return pack_iova( 0/*offset*/, t/*rentry*/, rid );

}

void unmap(rDEVICE d, rIOVA iova, bool end_of_burst) {
rRING r = d.rings[iova.rid];
r.ring[iova.rentry].valid = 0;
locked { r.nmapped--; }
sync_mem( & r.ring[iova.rentry] );
if( end_of_burst )

riotlb_invalidate( bus_dev_func(d), iova.rid );
}
void sync_mem(void * line) {

if( ! riommu_pt_is_coherent() ) {
memory_barrier();
cache_line_flush( line );

}
memory_barrier();

}

Figure 11. Outline of the rIOMMU OS driver map and unmap routines, which respectively correspond to Figures 4 and 6.

provided they conform to the size constraint encoded into the
corresponding rPTE.

The flow of unmap (Figure 11/right) corresponds to Figure
6. Unmap gets an rIOVA, marks the associated rPTE as invalid
(analogous to walking the table hierarchy), decrements the
ring’s nmapped counter (analogous to IOVA deallocation),
and synchronizes the memory to make the rPTE update
visible to the rIOMMU. Recall that when the device driver
is notified that its device has finished some DMAs, it loops
through the relevant descriptors and sequentially unmaps their
IOVAs (§2.3). The driver sets the end_of_burst parameter of
unmap to true at the end of this loop upon the last IOVA,
signifying that an rIOTLB_entry invalidation is required. One
such invalidation is sufficient for the entire burst because, by
design, each rRING has at most one rIOTLB_entry allocated in
the rIOTLB.

Our experimental measurements indicate that the average
loop length of a throughput-sensitive workload such as Net-
perf is ~200 iterations. This is long enough to make the amor-
tized cost of IOTLB invalidations negligible, as in the deferred

mode, but without sacrificing safety. Amortization, however,
does not apply to latency-sensitive workloads. Nonetheless,
the invalidation cost is small in comparison to the overall
latency as will shortly be demonstrated.

Finally, we consider the problem of synchronizing the
memory between the IOMMU and its driver. In sync_mem
(Figure 11 bottom/right), we see support for two hardware
modes, corresponding to whether the IOMMU table walk is
coherent with the CPU caches. The baseline Linux kernel
queries the relevant IOMMU capability bit. If it finds that
the two are not in the same coherency domain, it introduces
an additional memory barrier followed by a cacheline flush.
In the following section, we experimentally evaluate two
simulated rIOMMU versions corresponding to these two
modes.

Applicability and Limitations We note in passing that
rIOMMU relies on the predictability of the order of IOVA
(un)mappings—not the order by which the IOVAs are used
by the device. That is, so long as IOVAs are valid (mapped),
they can be used out of order. They are merely indices to a



1D-array. The only implication of an out of order access is
that the rIOTLB prefetched ’next’ entry would not satisfy
that access, so the translation would have to be fetched from
DRAM. (Namely, the riotlb_entry_sync hardware routine
will be re-invoked; see left of Figure 10.)

Let R be a ring. Let D be the number of DMA descriptors
comprising R. Let L be the maximal number of R’s live
IOVAs whose DMAs are currently in flight. And let N be
the size of the associated rRING. N is set by the device
driver upon startup. Optimally, N ≥ L, or else the driver
would experience overflow (2nd line of map in Figure 11).
While suboptimal, overflow is legal as with other devices
employing rings; it just means that the driver should slow
down. D is typically hundreds or a few thousands. In some
I/O devices, each descriptor can hold a constant number of
IOVAs (K), so setting N = D×K would prevent overflow.
Some devices support scatter-gather lists, whose K might
be large or unbounded. Developers of device drivers must
therefore make a judicious decision regarding N based on
their domain-specific knowledge about L. (In our experiments,
L was at most 8K for all rings.) Alternatively, developers can
opt for using the baseline IOMMU as discussed below.

The IOMMU induces noticeable overhead only for high
bandwidth I/O devices, notably NICs and PCIe SSDs. We
have thus far focused on the former, but rIOMMU is also
applicable to the latter. Specifically, PCIe SSDs adhere to
the NVM Express (NVMe) specification for fast non-volatile
memory devices [41], which dictates that OS-device inter-
actions are conducted via circular rings that impose a strict
(un)mapping order. (There can be up to 64K such rings, which
are denoted “queues”; each queue may contain up to 64K de-
scriptors, which are denoted “commands”.)

Conversely, rIOMMU is inapplicable to slower SATA
drives, which adhere to the Advanced Host Controller In-
terface Specification (AHCI) [29]. A SATA drive has a single
queue with 32 slots (DMA descriptors) that can be processed
by the drive in arbitrary order. It would be easy to extend
rIOMMU to support this work mode as well. But such support
seems unneeded, because SATA drives are too slow to benefit.
Our measurements indicate indistinguishable performance
results when running the Bonnie++ benchmark [15, 39] exe-
cuting sequential I/O with (1) strict IOMMU protection and
with (2) a disabled IOMMU. Regardless of whether we use a
SATA HDD or a SATA SSD.

rIOMMU is likewise inapplicable in setups that exploit
remote direct memory access (RDMA), where fine-grained
protection is impractical. The reason: all the memory that
could be accessed by the passive, receiving NIC must be
persistently mapped by the IOMMU, as it is unknown which
location would be accessed. We therefore do not propose to
entirely replace the baseline IOMMU, only to supplement
it. (PCIe allows for multiple IOMMUs and existing systems
routinely support such configurations.)

5. Evaluation

5.1 Methodology

Simulating rIOMMU We experimentally evaluate the
seven IOMMU modes defined in §3–4: (1) strict, which
is the completely safe Linux baseline; (2) strict+, which en-
hances strict with our faster IOVA allocator; (3) defer, which
is the Linux variant that trades off some protection for perfor-
mance by batching IOTLB invalidations; (4) defer+, which is
defer with our IOVA allocator; (5) riommu- (in lowercase),
which is the newly proposed rIOMMU when assuming no
I/O page table coherency; (6) riommu, which does assume
coherent I/O page tables; and (7) none, which turns off the
IOMMU.

The five non-rIOMMU modes are executed as is. They
constitute full implementations of working systems and do
not require a simulation component. To simulate the two
rIOMMU modes, we start with the none mode as the baseline.
We then supplement the baseline with calls to the (un)map
functions, similarly to the way they are called in the non-
simulated IOMMU-enabled modes. But instead of invoking
the native functions of the Linux IOMMU driver (Figures 4
and 6), we invoke the (un)map functions that we implement
in the simulated rIOMMU driver (Figure 11). All the code
of the rIOMMU driver can be—and is—executed, with one
exception. Since there is no real rIOTLB, we must simulate
the invalidation of rIOTLB entries. We do so by busy waiting
for 2,150 cycles upon each entry invalidation, in accordance
to the measurements specified in Table 1.

Notice that our methodology does not account for differ-
ences between the existing and proposed IOMMU translation
mechanism. We only account for actions shown in Figures
4 and 6 but not those in Figure 5. Notably, we ignore the
fact that the IOMMU works harder than the rIOMMU due
to IOTLB misses that rIOMMU avoids via prefetching. We
likewise ignore the fact that rIOMMU works harder than the
no-IOMMU mode, since it translates addresses whereas the
no-IOMMU mode does not. We ignore these differences, as
the model validated in §3.3 shows that throughput is entirely
determined by the number of cycles it takes the core—not
the device or the IOMMU—to process a DMA request, even
for the most demanding I/O-intensive workloads. The system
behaves this way probably because the device and IOMMU
operate in parallel to the CPU and are apparently fast enough
so as not to constitute a bottleneck.

We revalidate our methodology and show that it is also
applicable for latency-sensitive workloads by using the stan-
dard Netperf UDP request-response (RR) benchmark, which
repeatedly sends one byte to its peer and waits for an identi-
cal response. We run RR under two IOMMU modes: hard-
ware pass-through (HWpt) and software pass-through (SWpt).
With HWpt, the IOMMU is enabled, but it translates each
IOVA to an identical physical address without consulting
the IOTLB or any page table. SWpt provides an equivalent



functionality by using a page table that maps the entire physi-
cal memory and associates each physical page address with
an identical IOVA. Under SWpt, Netperf RR experiences an
IOTLB miss on every packet it sends and receives. Nonethe-
less, we find that the performance of HWpt and SWpt is iden-
tical, because the network stack and interrupt processing in-
troduce far greater latencies that hide the IOTLB miss penalty.
Moreover, we find that the RR performance of HWpt/SWpt
is identical to that of no-IOMMU.

Throughput performance of Netperf stream with HWpt
and SWpt is smaller by ~10% relative to no-IOMMU. But
here too the difference is entirely caused by the core: about
200 CPU cycles spent on unrelated kernel abstraction code
that executes under HWpt/SWpt but not under no-IOMMU.

Experimental Setup In an effort to get more general results,
we conduct the evaluation using two setups involving two
different NICs, as follows.

The Mellanox setup (mlx for short) is comprised of two
identical Dell PowerEdge R210 II Rack Server machines that
communicate through Mellanox ConnectX3 40Gbps NICs
connected back to back and configured to use Ethernet. We
use one machine as the server and the other as a workload
generator client. Each machine has a 8GB 1333MHz memory
and a single-socket 4-core Intel Xeon E3-1220 CPU running
at 3.10GHz. The chipset is Intel C202, which supports VT-
d, Intel’s Virtualization Technology that provides IOMMU
functionality. We configure the server to utilize one core
only and turn off all power optimizations—sleep states (C-
states) and dynamic voltage and frequency scaling (DVFS)—
to avoid reporting artifacts caused by nondeterministic events.
The machines run Ubuntu 12.04 with the Linux 3.4.64 kernel.
All experimental findings described thus far were obtained
with the mlx setup.

The Broadcom setup (brcm for short) is similar, likewise
utilizing two R210 machines. The differences are that the
two machines communicate through Broadcom NetXtreme II
BCM57810 10GbE NICs (connected by a CAT7 10GBASE-
T cable for fast Ethernet); that they have 16GB memory; and
that they run the Linux 3.11.0 kernel.

The mlx and brcm device drivers differ substantially.
Notably, mlx utilizes more ring buffers and allocates more
IOVAs (we observed a total of ~12K addresses for mlx and
~3K for brcm). The mlx driver uses two target buffers per
packet (header and body) and thus two IOVAs, whereas the
brcm driver allocates only one buffer/IOVA per packet.

Benchmarks To drive our experiments we utilize the fol-
lowing benchmarks. Netperf TCP stream [30] is a standard
tool to measure networking throughput. It maximizes the
amount of data sent over one TCP connection, simulating
an I/O-intensive workload. Its default message size is 16KB.
This is the application we used in §3.

Netperf UDP RR (request-response) models a latency
sensitive workload by exchanging one byte messages in a

ping-pong manner. The per message latency can be calculated
as the inverse of the number of messages per second.

Apache [18, 19] is a HTTP web server. We drive it with
ApacheBench [5] (distributed with Apache) that measures the
number of requests per second that the server is capable of
handling, issuing (32) concurrent requests of a static page of a
given size. We run two instances of the benchmark, requesting
a smaller (1KB) and a bigger (1MB) file.

Memcached [20] is an in-memory key-value storage server.
We drive it with the Memslap benchmark [2] (part of the lib-
memcached client library), which measures the completion
rate of the requests that it generates. By default, Memslap
generates a workload comprised of 90% get and 10% set op-
erations, with 64B and 1KB key and value sizes, respectively.
It too is set to use 32 concurrent requests.

5.2 Results

We run each benchmark 100 times. Each individual run
is configured to take ~10 seconds. We treat the first 10
runs as warmup and report the average of the remaining 90
runs. Figure 12 shows the resulting throughput and CPU
consumption for the mlx (top) and brcm (bottom) setups. The
corresponding normalized performance is shown in Table
2, specifying the relative improvement of the two rIOMMU
variants over the other modes. The top/left plot in Figure 12
corresponds to the analysis and data shown in Figures 7–8.

Let us discuss the results in Figure 12, left to right. The
greatest observed improvement by rIOMMU is attained with
mlx / Netperf stream (Figure 12/top/left). This result is to
be expected considering the model from §3.3 showing that
every cycle shaved off the IOVA (un)mappings translates into
increased throughput. CPU cycles constitute the bottleneck
resource, as is evident from the mlx/stream/CPU curve, which
is at 100% for all IOMMU modes. The notable difference
between riommu- and riommu is due to ~1.1K cycles that the
former adds to the latter, which is the cost of four additional
memory barriers and four additional cacheline flushes, per
packet. (Specifically, a barrier and a cacheline flush in both
map and unmap for two IOVAs corresponding to the packet’s
header and data.) Riommu- and riommu provide 2.90–7.56x
higher throughput relative to the completely safe IOMMU
modes strict and strict+, and 1.74–3.79x higher throughput
relative to the deferred modes. The latter, however, does not
constitute an apple-to-apples comparison, since the deferred
modes are vulnerable whereas the rIOMMU modes are
safe. Riommu- and riommu deliver 0.52x and 0.77x lower
throughout relative to the unprotected, no-IOMMU optimum.

The brcm/stream results (Figure 12/bottom/left) are quan-
titatively and qualitatively different. In particular, all IOMMU
modes except strict have enough cycles to saturate the Broad-
com NIC and achieve its line-rate, which is 10 Gbps. The
brcm setup requires fewer cycles per packet because its de-
vice driver is more efficient, e.g., due to utilizing only one
IOVA per packet instead of two. In setups of this type—where
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Figure 12. Performance of the IOMMU modes when using the Mellanox (top) and Broadcom (bottom) NICs.

NIC benchmark throughput cpu
riommu- divided by riommu divided by riommu- divided by riommu divided by

strict strict+ defer defer+ none strict strict+ defer defer+ none strict strict+ defer defer+ none strict strict+ defer defer+ none
mlx stream 5.12 2.90 2.57 1.74 0.52 7.56 4.28 3.79 2.57 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

rr 1.23 1.07 1.05 1.02 0.95 1.25 1.09 1.07 1.03 0.96 0.94 0.99 0.98 0.99 1.01 0.93 0.98 0.96 0.98 1.00
apache 1M 5.30 1.62 1.58 1.20 0.76 5.80 1.77 1.73 1.31 0.83 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.99 1.00 1.00
apache 1K 2.32 1.08 1.07 1.03 0.92 2.32 1.08 1.07 1.03 0.92 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
memcached 4.77 1.17 1.25 1.03 0.82 4.88 1.19 1.28 1.05 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

brcm stream 2.17 1.00 1.00 1.00 1.00 2.17 1.00 1.00 1.00 1.00 0.40 0.50 0.64 0.81 1.21 0.36 0.45 0.58 0.73 1.09
rr 1.19 1.05 1.04 1.02 0.99 1.21 1.06 1.05 1.03 1.00 0.86 0.96 0.96 1.00 1.11 0.84 0.93 0.93 0.98 1.08
apache 1M 1.20 1.01 1.00 1.00 1.00 1.20 1.01 1.00 1.00 1.00 0.48 0.49 0.60 0.75 1.41 0.41 0.42 0.52 0.65 1.22
apache 1K 1.24 1.13 1.08 1.02 0.89 1.29 1.18 1.13 1.07 0.93 0.99 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00
memcached 1.76 1.35 1.18 1.10 0.78 1.88 1.45 1.27 1.18 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2. Relative (normalized) performance numbers.

the network is saturated—the performance metric of interest
becomes the CPU consumption. By Table 2, we can see that
riommu and riommu- consume 0.36–0.50x fewer CPU cycles
than the two strict modes; 0.58–0.81x fewer cycles than the
deferred modes; and 1.09x and 1.21x more cycles than the
no-IOMMU optimum, respectively.

The improvement by rIOMMU is less pronounced when
running RR, in both mlx and brcm, with 1.02–1.25x higher
throughput and 0.84–1.00x lower CPU consumption relative
to the strict and deferred variants. It is less pronounced due
to RR’s ping-pong nature, which implies that CPU cycles are
in low demand, as indicated by the CPU curves at 28–30%
for mlx and at 12–15% for brcm. For this reason, in compari-
son to mlx/RR/none, rIOMMU has 4–5% lower throughput
and nearly identical CPU consumption. In comparison to
brcm/RR/none, rIOMMU has 8–11% higher CPU consump-
tion and nearly identical throughput. Although the per-packet
processing time at the core is smaller in brcm, overall, the
mlx hardware transmits packets faster, as indicated by its

NIC strict strict+ defer defer+ riommu- riommu none
mlx 17.3 15.1 14.9 14.4 14.1 13.9 13.4
brcm 41.9 36.7 36.6 35.8 35.1 34.7 34.6

Table 3. Netperf RR round-trip time in microseconds.

higher RR throughput. The corresponding round-trip time
of the different modes (which, as noted, is the inverse of the
throughput in RR’s case) is shown in Table 3.

The results of Apache 1MB are qualitatively identical to
those of Netperf stream, because the benchmark transmits a
lot of data per request and is thus throughput sensitive. Con-
versely, Apache 1KB is not throughput sensitive. Its smaller
1KB requests make the performance of mlx and brcm look
remarkably similar despite their networking infrastructure
difference. In both cases, the bottleneck is the CPU, while
the volume of the transmitted data is only a small fraction of
the NICs capacity. (Both deliver ~12K requests per second of
1KB files, yielding a transfer rate of ~0.1 Gbps.) The reason:
Apache requires heavy processing for each http request. This



overhead is amortized over hundreds of packets in the case
of Apache 1MB but over only one packet in the case of 1KB.
Thus, the computational processing dominates the throughput
of Apache 1KB and the role of the networking infrastructure
is marginalized. Even so, rIOMMU demonstrates a ~1.24x
and ~2.32x throughput improvement over brcm/strict and
mlx/strict, respectively. It is up to 1.18x higher relative to the
other IOMMU-enabled modes. And ~0.9x lower relative to
the unprotected optimum.2

The network activity of Apache 1KB is somewhat similar
to that of the Memcached benchmark, because both are
configured with 32 concurrent requests, both receive queries
comprised of a few dozens of bytes (file name or key item),
and both transmit 1KB responses (file content or data item).
The difference is that the Memcached internal logic is simpler,
as its purpose is merely to serve as an in-memory LRU cache.
For this reason, it achieves an order of magnitude higher
throughput relative to Apache 1KB.3 The shorter per-request
processing time makes the differences between the IOMMU
configurations more pronounced, with rIOMMU throughput
that is 1.17–4.88x higher than the completely safe modes,
1.03–1.28x higher than the deferred modes, and 0.78–0.84x
lower than the optimum.

5.3 When IOTLB Miss Penalty Matters

Our experiments thus far indicated that using the IOMMU
affects performance because it mandates the OS to spend
CPU cycles on creating and destroying IOVA mappings. We
were unable to measure the overhead caused by the actual
IOMMU translation activity of walking the page tables upon
an IOTLB miss (Figures 2 and 5). In §5.1, we attributed
this inability to the substantially longer latencies induced by
interrupt processing and the TCP/IP stack. In Table 3, we
specified the round-trip latencies, whose magnitude (13–42
µs) seems to suggest that the occasional cost of 4 memory
references per table walk is negligible in comparison.

There are, however, high performance environments that
enjoy lower latencies in the order of a µs [14, 21, 43, 48],
which is required, e.g., “where a fraction of a microsecond
can make a difference in the value of a transaction” [1]. User-
level I/O, for example, might permit applications to (1) utilize
raw Ethernet packets to eliminate TCP/IP overheads, and to
(2) poll the I/O device to eliminate interrupt delays.

With the help of the ibverbs library [27, 35], we established
such a configuration on top of the mlx setup. We ran two ex-
periments. The first iteratively and randomly selects a buffer
from a large pool of previously mapped buffers and transmits
it, thus ensuring that the probability for the corresponding
IOVA to reside in the IOTLB is low. The second experiment
does the same but with only one buffer, thus ensuring that the

2 We note in passing that our Apache 1KB throughput results coincide with
that of Soares et al. [46], who reported a latency of 22ms for 256 concurrent
requests, which translate to 1000/22 × 256 ≈ 12K requests/second.
3 Our Memcached results are comparable to that of Gordon et al. [22].

IOTLB always hits. The latency difference—which is the cost
of an IOTLB miss—was ~0.5 µs (1532 cycles on average);
we believe it is reasonable to assume that it approximates the
benefit of using rIOMMU over the existing IOMMU in high
performance environments of this type.

5.4 Comparing to TLB Prefetchers

RIOMMU is not a prefetcher. Rather, it is a new IOMMU
design that allows for efficient IOVA (un)mappings while min-
imizing costly IOTLB invalidations. (Unrelated to prefetch-
ing.) But rIOMMU does have a prefetching component, since
it loads to the rIOTLB the next IOVA to be used ahead of
time. While this component turned out to be useful only in
specialized setups (§5.3), it is still interesting to compare this
aspect of our work to previously proposed TLB prefetchers.

For lack of space, we only briefly describe the bottom line.
We modified the IOMMU layer of KVM/QEMU to log the
DMAs that its emulated I/O devices perform. We ran our
benchmarks in a VM and generated DMA traces. We fed
the traces to three simulated TLB prefetchers: Markov [31],
Recency [44], and Distance [34], as surveyed by Kandiraju
and Sivasubramaniam [33]. We found their baseline versions
to be ineffective, as IOVAs are invalidated immediately after
being used. We modified them and allowed them to store
invalidated addresses, but mandated them to walk the page
table and check that their predictions are mapped before
making them. Distance was still ineffective. Recency and
Markov, however, were able to predict most accesses, but only
if the number of entries comprising their history data structure
grew larger than the ring. In contrast, rIOTLB requires only
two entries per ring and its “predictions” are always correct.

6. Conclusions

The IOMMU design is similar to that of the regular MMU,
despite the inherent differences in their workloads. This de-
sign worked reasonably well when I/O devices were relatively
slow as compared to the CPU. But it hampers the performance
of contemporary devices like 10/40 Gbps NICs. We foresee
that this problem will get worse due to the ever increasing
speed of such devices. We thus contend that it makes sense
to rearchitect the IOMMU such that it directly supports the
unique characteristics of its workload. We propose rIOMMU
as an example for such a redesign and show that the benefits
of using it are substantial.
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