
The Xen hypervisor
virtualizing a machine near you

Muli Ben-Yehuda

mulix@mulix.org

IBM Haifa Research Labs

The Xen hypervisor Haifux, April 2005 – p.1/20



TOC

intro to Virtualization

the Xen hypervisor

CPU virt.

MMU virt.

IO virt.

status and future work

The Xen hypervisor Haifux, April 2005 – p.2/20



Introduction to Virtualization

we’re used to a simple equation, one physical machine
runs one OS at any given time. By virtualizing the
machine, we are able to run several operating systems
(and all of their applications) at the same time. Magic?
almost.

virtualization isn’t new... its been around since the 60’s
and 70’s in IBM. Some of you may be also familiar with
VMWare, which is a virtualization offering for x86. In
this talk we will discuss the Xen Virtual Machine Manitor
(I prefer the term hypervisor), an open source project
which brings free software virtualization to a machine
near you.

The Xen hypervisor Haifux, April 2005 – p.3/20



Why Virtualize?

machine consolidation.

testing.

debugging.

OS research.

live updates (a.k.a. 24x7 uptime).

diversity, a.k.a using the best tool for the job.

The Xen hypervisor Haifux, April 2005 – p.4/20



Quick Overview of Xen

provides secure isolation

provides resource control and QoS

requires minimal operating systems changes, and no
userspace changes

supports x86, x86-64, ia64 and PPC in varying degrees
of maturity

supports Linux 2.4 and 2.6, NetBSD, FreeBSD, ...

close to native performance!

supports live migration of VMs

widespread hardware support, including direct device
access

The Xen hypervisor Haifux, April 2005 – p.5/20



Quick Overview of Xen cont’

developed and maintained at the Cambridge University
Systems Research Group, by Steven Hand, Ian Pratt,
Keir Fraser, lots of others.

contributions from Intel, AMD, HP, IBM, others.

commercial backing available from
http://www.xensource.com/

These slides are based on the Xen papers, presentations
and code. You can find all of them at
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
and are encouraged to do so.

The Xen hypervisor Haifux, April 2005 – p.6/20

http://www.xensource.com/
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/


Full Virtualization

full virtualiztion refers to running an unmodified OS on a
virtual machine (e.g. VMWare). There are many ways
to do this - for example binary rewriting of the running
OS image.

hardware support makes full virtualiztion much easier.

x86 is notoriously difficult to virtualize because some
priviledged instructions simply fail silently, rather than
raising a trap.

The Xen hypervisor Haifux, April 2005 – p.7/20



Paravirtualization

Paravirtualization refers to modifying the OS to make
virtualization faster - modifying the OS to run on the
virtualized environment rather than on bare metal.

easy to do when you have the source

can be combined with full virtualization techniques -
paravirtualize where you can, use full-virtualization
techniques where you can’t avoid it.

XenoLinux - a port of Linux to run under the Xen
hypervisor.

the bulk of the work is replacing priviledged instructions
(e.g. cli, hlt, write to cr3) with hypervisor calls.

core concept: modify the OS to the virtualized
environment, but expose some details of the hardware
for optimization. The Xen hypervisor Haifux, April 2005 – p.8/20



CPU Virtualization

(All details refer to x86-32 - other archs are done differently)

x86 CPUs have 4 modes of operation, known as the 4
rings. Ring 0 is the most priviledged and ring 3 the
least.

Xen runs in ring 0, where the kernel normally runs.

The kernel is moved to ring 1 or 2. No OS has used
either of these since OS2. This is the part that requires
the operating system changes.

Userspace runs in ring3 - just like it does today - no
userspace changes necessary.

Xen is mapped in every OS’s address space at the top
64 MB of memory, to save a tlb flush.

The Xen hypervisor Haifux, April 2005 – p.9/20



CPU Virtualization cont’

how to protect xen from malicious guests? we could
use page tables switching, but that would be too slow.
Instead segmentation is used.

to perform a priviledged operation, the guest uses a
hypercall that jumps to Xen

it is possible to let system calls go from user-space to
guest kernel directly, by verfiying the trap handler before
it is installed.

The Xen hypervisor Haifux, April 2005 – p.10/20



virtualizing the MMU

Virtualizing the MMU is the most difficult task a hypervisor
implementor faces. We will discuss:

shadow page tables

direct page table access

The Xen hypervisor Haifux, April 2005 – p.11/20



Shadow Page Tables

when using shadow page tables, the OS keeps its own
set of page tables, distinct from the set of page tables
that are shared with the hardware.

the hypervisor traps page table updates and is
repsonsible for validating them and propagating
changes to the hardware page tables and back.

The Xen hypervisor Haifux, April 2005 – p.12/20



Direct Page Tables access

Xen, being a paravirtualized architecture, can do this much
more efficiently. Rather than keeping distinct page tables for
itself and for the OS, the OS is allowed read only access to
the real page tables. Page tables updates must still go
through the hypervisor rather than as direct memory writes.

guest OSes allocate and manage their own PTs - use a
hypercall to change the PT base (cr3)

updates go through the hypervisor, which validates
them - the OS must not give itself unrestricted PT
access, access to hypervisor space, or access to other
VMs.

The Xen hypervisor Haifux, April 2005 – p.13/20



Segmentation Support

segementation support is required by the thread
libraries for TLS (thread local storage)

Xen provides virtualized GDT and LDT

since Xen itself is protected by a segment, there can be
no other segments that overlap with it

NPT TLS uses uses segments in a way that conflicts
with Xen - Xen has to use emulation and binary
rewriting to deal with it.

The Xen hypervisor Haifux, April 2005 – p.14/20



IO handling

when Xen boots up, it launches dom0, the first
priviledged domain

dom0 is a priviledged domain that can touch all
hardware in the system (long term goal is to move all
hardware handling to dom0)

dom0 exports some subset of the the devices in the
system to the other domains

devices are exported via device channels - an asynch
shared memory transport coupled with event rings for
interrupts

The Xen hypervisor Haifux, April 2005 – p.15/20



IO handling cont’

dom0 runs the backend of the device, which is exported
to each domain via a frontend

netback, netfront
blockback, blockfront
there’s a PCI pass through for other kinds of devices
(e.g. sound)

backends and frontends communicate via a high level
device abstraction - block class, network class, etc

domains other than dom0 may be granted physical
device access, securely [as secure as the architecture
allows, anyway]

virtual PCI configuration space and virtual interrupts

The Xen hypervisor Haifux, April 2005 – p.16/20



Performance

Xen provides near native performance. What else is there
to say? ;-)

The Xen hypervisor Haifux, April 2005 – p.17/20



Scalability

Xen includes a balloon driver to reclain unused guest
memory and give it to other guests.

PAE36 work in progress, as is large SMP support (2-4
way SMP support works for xen and virtual CPUs for
guests already work)

multiple scheduling algorithms supported, multiple
backend block drivers, multiple NICs, etc.

The Xen hypervisor Haifux, April 2005 – p.18/20



Status

stable (2.0.5), testing and unstable (3.0) branches.

3.0 expected in July 2005.

unstable really means unstable, progressing at a rapid
pace.

the management tools are being constantly rewritten ;-)

x86 works very well, x86-64, IA64 and PPC work in
progress.

already includes suppot for Intel’s VT/VX and AMD’s
Pacifica, which should allow running unmodified OS’s -
including Windows.

The Xen hypervisor Haifux, April 2005 – p.19/20



Future Work

larger SMP support

stability, robustness and performance - making Xen
enterprise quality

cluster load balancing

system debugging, pause/replay, VM forking

secure Xen (sHype)

your project here :-)

The Xen hypervisor Haifux, April 2005 – p.20/20


	TOC
	Introduction to Virtualization
	Why Virtualize?
	Quick Overview of Xen
	Quick Overview of Xen cont'
	Full Virtualization
	Paravirtualization
	CPU Virtualization
	CPU Virtualization cont'
	virtualizing the MMU
	Shadow Page Tables
	Direct Page Tables access
	Segmentation Support
	IO handling
	IO handling cont'
	Performance
	Scalability
	Status
	Future Work

