
Machine Virtualization for Fun, Profit, and Security

Muli Ben-Yehuda

Technion & IBM Research

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 1 / 27

Background: x86 machine virtualization

Running multiple different unmodified operating systems
Each in an isolated virtual machine
Simultaneously
On the x86 architecture
Many uses: live migration, record & replay, testing, . . . , security
Foundation of IaaS cloud computing
Used nearly everywhere

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 2 / 27

x86 virtualization primer

What is the problem?
Popek and Goldberg’s virtualization model [Popek74]: Trap and
emulate
Privileged instructions trap to the hypervisor
Hypervisor emulates their behavior
Without hardware support
With hardware support

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 3 / 27

What is a rootkit?

First you take control. How?
Then you hide to avoid detection and maintain control. How?
Usual methods are ugly and intrusive: easy to detect!
Can we do better?

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 4 / 27

Hypervisor-level rootkits

Hypervisors have full control over the hardware
Hypervisors can trap any operating system event
Code can enter hypervisor-mode at any time
Solution: run the rootkit as a hypervisor

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 5 / 27

Bluepill: a hypervisor level rootkit [Rutkowska06]

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 6 / 27

Bluepill cont’

Bluepill installs itself on the fly
Can you bluepill bluepill?

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 7 / 27

What is the Turtles project?

Efficient nested virtualization for Intel x86 based on KVM
Runs multiple guest hypervisors and VMs: KVM, VMware, Linux,
Windows, . . .
Code publicly available

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 8 / 27

What is the Turtles project? (cont’)

Nested VMX virtualization for nested CPU virtualization
Multi-dimensional paging for nested MMU virtualization
Multi-level device assignment for nested I/O virtualization
Micro-optimizations to make it go fast

+ + =

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 9 / 27

Theory of nested CPU virtualization

Trap and emulate[PopekGoldberg74] ⇒ it’s all about the traps
Single-level (x86) vs. multi-level (e.g., z/VM)
Single level ⇒ one hypervisor, many guests
Turtles approach: L0 multiplexes the hardware between L1 and L2,
running both as guests of L0—without either being aware of it
(Scheme generalized for n levels; Our focus is n=2)

Hardware

Host Hypervisor

Guest

Hardware

Host Hypervisor

Multiplexed on a single level Multiple logical levels

L0

L1

L2

L1

Guest
L2

Guest
L2

L0

Guest
L2L2

Guest
Hypervisor

Guest
Hypervisor GuestGuest

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 10 / 27

Detecting hypervisor-based rootkits

Bluepill authors claim “undetectable”
“Compatibility is Not Transparency: VMM Detection Myths and
Realities” [Garfinkel07]
Hardware discrepancies
Resource-sharing attacks
Timing attacks: PCI register access, page-faults on MMIO access,
cpuid timing vs. nops
Can you trust time?

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 11 / 27

What does it mean, to do I/O?

Programmed I/O (in/out
instructions)
Memory-mapped I/O (loads
and stores)
Direct memory access (DMA)
Interrupts

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 12 / 27

I/O virtualization via device emulation

GUEST

HOST

1

2

34

device
emulation

driver
device

driver
device

Emulation is usually the default [Sugerman01]
Works for unmodified guests out of the box
Very low performance, due to many exits on the I/O path

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 13 / 27

I/O virtualization via paravirtualized devices

GUEST

HOST

driver

1

23

back−end

virtual
driver

front−end

virtualdevice
driver

Hypervisor aware drivers and “devices” [Barham03,Russell08]
Requires new guest drivers
Requires hypervisor involvement on the I/O path

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 14 / 27

Hypervisor-based I/O introspection

Useful: anti-virus, intrustion detection, compression, live
migration, . . .
Q1: how do you do it without impacting performance?
Q2: how do you bridge the semantic gap?

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 15 / 27

I/O virtualization via device assignment

GUEST

HOST

device
driver

Bypass the hypervisor on I/O path [Levasseur04,Ben-Yehuda06]
SR-IOV devices provide sharing in hardware
Best performance: 100% of bare-metal! [Gordon12]

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 16 / 27

Comparing I/O virtualization methods

IOV method throughput (Mb/s) CPU utilization
bare-metal 950 20%

device assignment 950 25%
paravirtual 950 50%
emulation 250 100%

netperf TCP_STREAM sender on 1Gb/s Ethernet (16K msgs)
Device assignment best performing option
Challenges: DMA and interrupts

Table from “The Turtles Project: Design and Implementation of Nested
Virtualization” [Ben-Yehuda10]

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 17 / 27

Direct memory access (DMA)

All modern devices access memory directly
On bare-metal:

A trusted driver gives its device an address
Device reads or writes that address

Protection problem: guest drivers are not trusted
Translation problem: guest memory 6= host memory
Direct access: the guest bypasses the host
What is the obvious attack?
How do you protect against it?

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 18 / 27

IOMMU

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 19 / 27

Background: interrupts

IDTIDTR

Limit

Address

IDT Entry

IDT Entry

…

IDT Entry

Vector 1

Vector n

Vector 2

Interrupt
Descriptor
Table

IDT
Register

Interrupt handlers

I/O devices raise interrupts
CPU temporarily stops the currently executing code
CPU jumps to a pre-specified interrupt handler

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 20 / 27

Interrupt-based attacks

Follow the White Rabbit [Rutkowska11]
Tell the device to generate “interesting” interrupts
Attack: fool the CPU into SIPI
Attack: syscall/hypercall injection
Interrupt-based attacks: guest generating interrupts which are
handled in host mode
Why not handle interrupts in guest mode?

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 21 / 27

ELI: Exitless Interrupts

bare-metal

Baseline

guest

hypervisor

(time)

ELI
delivery

guest

hypervisor

ELI
delivery &
completion

guest

hypervisor

Physical
Interrupt

Interrupt
Completion

(a)

(b)

(c)

Interrupt
Injection

Interrupt
Completion

(d)

ELI: direct interrupts for unmodified, untrusted guests

“ELI: Bare-Metal Performance for I/O Virtualization”, Gordon, Amit,
Hare’El, Ben-Yehuda, Landau, Schuster, Tsafrir, ASPLOS ’12

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 22 / 27

ELI: delivery

Shadow
IDT

Hypervisor

Shadow
IDT

Interrupt
Handler

Assigned
Interrupt

Physical
Interrupt

Non-assigned
Interrupt
(#NP/#GP exit)

ELI
Delivery

Guest
IDT

VM

IDT Entry

IDT Entry

…

IDT Entry

P=0

P=1

P=0

Handler

#NP

#NP

IDT Entry
#GP

IDTR
Limit

All interrupts are delivered directly to the guest
Host and other guests’ interrupts are bounced back to the host
. . . without the guest being aware of it

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 23 / 27

ELI: signaling completion

Guests signal interrupt completions by writing to the Local
Advance Programmable Interrupt Controller (LAPIC)
End-of-Interrupt (EOI) register
Old LAPIC: hypervisor traps load/stores to LAPIC page
x2APIC: hypervisor can trap specific registers

Signaling completion without trapping requires x2APIC
ELI gives the guest direct access only to the EOI register

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 24 / 27

ELI: threat model

Threats: malicious guests might try to:
keep interrupts disabled
signal invalid completions
consume other guests or host interrupts

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 25 / 27

ELI: protection

VMX preemption timer to force exits instead of timer interrupts
Ignore spurious EOIs
Protect critical interrupts by:

Delivering them to a non-ELI core if available
Redirecting them as NMIs→unconditional exit
Use IDTR limit to force #GP exits on critical interrupts

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 26 / 27

Conclusions

Machine virtualizaion is very useful
Can be used for good, or evil
Complexity leads to unintended consequences
Happy hacking!

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 27 / 27

