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Background: x86 machine virtualization

Running multiple different unmodified operating systems
Each in an isolated virtual machine
Simultaneously
On the x86 architecture
Many uses: live migration, record & replay, testing, . . . , security
Foundation of IaaS cloud computing
Used nearly everywhere
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x86 virtualization primer

What is the problem?
Popek and Goldberg’s virtualization model [Popek74]: Trap and
emulate
Privileged instructions trap to the hypervisor
Hypervisor emulates their behavior
Without hardware support
With hardware support
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What is a rootkit?

First you take control. How?
Then you hide to avoid detection and maintain control. How?
Usual methods are ugly and intrusive: easy to detect!
Can we do better?
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Hypervisor-level rootkits

Hypervisors have full control over the hardware
Hypervisors can trap any operating system event
Code can enter hypervisor-mode at any time
Solution: run the rootkit as a hypervisor
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Bluepill: a hypervisor level rootkit [Rutkowska06]
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Bluepill cont’

Bluepill installs itself on the fly
Can you bluepill bluepill?
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What is the Turtles project?

Efficient nested virtualization for Intel x86 based on KVM
Runs multiple guest hypervisors and VMs: KVM, VMware, Linux,
Windows, . . .
Code publicly available
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What is the Turtles project? (cont’)

Nested VMX virtualization for nested CPU virtualization
Multi-dimensional paging for nested MMU virtualization
Multi-level device assignment for nested I/O virtualization
Micro-optimizations to make it go fast

+ + =
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Theory of nested CPU virtualization

Trap and emulate[PopekGoldberg74] ⇒ it’s all about the traps
Single-level (x86) vs. multi-level (e.g., z/VM)
Single level ⇒ one hypervisor, many guests
Turtles approach: L0 multiplexes the hardware between L1 and L2,
running both as guests of L0—without either being aware of it
(Scheme generalized for n levels; Our focus is n=2)
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Detecting hypervisor-based rootkits

Bluepill authors claim “undetectable”
“Compatibility is Not Transparency: VMM Detection Myths and
Realities” [Garfinkel07]
Hardware discrepancies
Resource-sharing attacks
Timing attacks: PCI register access, page-faults on MMIO access,
cpuid timing vs. nops
Can you trust time?
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What does it mean, to do I/O?

Programmed I/O (in/out
instructions)
Memory-mapped I/O (loads
and stores)
Direct memory access (DMA)
Interrupts
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I/O virtualization via device emulation
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Emulation is usually the default [Sugerman01]
Works for unmodified guests out of the box
Very low performance, due to many exits on the I/O path
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I/O virtualization via paravirtualized devices
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Hypervisor aware drivers and “devices” [Barham03,Russell08]
Requires new guest drivers
Requires hypervisor involvement on the I/O path
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Hypervisor-based I/O introspection

Useful: anti-virus, intrustion detection, compression, live
migration, . . .
Q1: how do you do it without impacting performance?
Q2: how do you bridge the semantic gap?
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I/O virtualization via device assignment
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Bypass the hypervisor on I/O path [Levasseur04,Ben-Yehuda06]
SR-IOV devices provide sharing in hardware
Best performance: 100% of bare-metal! [Gordon12]
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Comparing I/O virtualization methods

IOV method throughput (Mb/s) CPU utilization
bare-metal 950 20%

device assignment 950 25%
paravirtual 950 50%
emulation 250 100%

netperf TCP_STREAM sender on 1Gb/s Ethernet (16K msgs)
Device assignment best performing option
Challenges: DMA and interrupts

Table from “The Turtles Project: Design and Implementation of Nested
Virtualization” [Ben-Yehuda10]
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Direct memory access (DMA)

All modern devices access memory directly
On bare-metal:

A trusted driver gives its device an address
Device reads or writes that address

Protection problem: guest drivers are not trusted
Translation problem: guest memory 6= host memory
Direct access: the guest bypasses the host
What is the obvious attack?
How do you protect against it?
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IOMMU
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Background: interrupts
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I/O devices raise interrupts
CPU temporarily stops the currently executing code
CPU jumps to a pre-specified interrupt handler
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Interrupt-based attacks

Follow the White Rabbit [Rutkowska11]
Tell the device to generate “interesting” interrupts
Attack: fool the CPU into SIPI
Attack: syscall/hypercall injection
Interrupt-based attacks: guest generating interrupts which are
handled in host mode
Why not handle interrupts in guest mode?
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ELI: Exitless Interrupts
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ELI: direct interrupts for unmodified, untrusted guests

“ELI: Bare-Metal Performance for I/O Virtualization”, Gordon, Amit,
Hare’El, Ben-Yehuda, Landau, Schuster, Tsafrir, ASPLOS ’12
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ELI: delivery
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All interrupts are delivered directly to the guest
Host and other guests’ interrupts are bounced back to the host
. . . without the guest being aware of it

Muli Ben-Yehuda (Technion & IBM Research) Virtualization for Security Bar-Ilan University, 2012 23 / 27



ELI: signaling completion

Guests signal interrupt completions by writing to the Local
Advance Programmable Interrupt Controller (LAPIC)
End-of-Interrupt (EOI) register
Old LAPIC: hypervisor traps load/stores to LAPIC page
x2APIC: hypervisor can trap specific registers

Signaling completion without trapping requires x2APIC
ELI gives the guest direct access only to the EOI register
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ELI: threat model

Threats: malicious guests might try to:
keep interrupts disabled
signal invalid completions
consume other guests or host interrupts
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ELI: protection

VMX preemption timer to force exits instead of timer interrupts
Ignore spurious EOIs
Protect critical interrupts by:

Delivering them to a non-ELI core if available
Redirecting them as NMIs→unconditional exit
Use IDTR limit to force #GP exits on critical interrupts
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Conclusions

Machine virtualizaion is very useful
Can be used for good, or evil
Complexity leads to unintended consequences
Happy hacking!
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