
Linux Kernel Debugging
Your kernel just oopsed - What do you do,

hotshot?

Muli Ben-Yehuda
mulix@mulix.org

IBM Haifa Research Lab

Kernel Debugging, IBM HRL LKDSG 2003 – p.1/21



Kernel Debugging - Why?
• Why would we want to debug the kernel? after

all, it’s the one part of the system that we never
have to worry about, because it always works.

• Well, no.

Kernel Debugging, IBM HRL LKDSG 2003 – p.2/21



Kernel Debugging - Why?(cont)
• Because a driver is not working as well as it

should, or is not working at all.
• Because we have a school or work project.
• Because the kernel is crashing, and we don’t

know why.
• Because we want to learn how the kernel works.
• Because it’s fun! Real men hack kernels ;-)

Kernel Debugging, IBM HRL LKDSG 2003 – p.3/21



Broad Overview of the Kernel
• Over a million lines of code.

• Documentation/
• drivers/
• kernel/
• arch/
• fs/
• lib/
• mm/
• net/
• Others: security/ include/ sound/ init/ usr/

crypto/ ipc/

Kernel Debugging, IBM HRL LKDSG 2003 – p.4/21



Broad Kernel Overview (cont)
• Supports runtime loading and unloading of

additional code (kernel modules).
• Configured using Kconfig, a domain specifc

configuration language.
• Built using kbuild, a collection of complex

Makefiles.
• Heavily dependant on gcc and gccisms. Does not

use or link with user space libraries, although
supplies many of them - sprintf, memcpy, strlen,
printk (not printf!).

Kernel Debugging, IBM HRL LKDSG 2003 – p.5/21



Read the Source, Luke
• The source is there - use it to figure out what’s

going on.
• Linux kernel developers frown upon binary only

modules, because they don’t have the source and
thus cannot debug them.

• Later kernels include facilities to mark when a
binary only module has been loaded (“tainted
kernels”). Kernel developers will kindly refuse to
help debug a problem when a kernel has been
tainted.

Kernel Debugging, IBM HRL LKDSG 2003 – p.6/21



Read the Source, Luke (cont)
Use the right tools for the job. Tools to navigate the
source include:

• lxr - http://www.iglu.org.il/lxr/
• find and grep
• ctags, etags, gtags and their ilk.

Use a good IDE

• emacs
• vi
• One brave soul I heard about used MS Visual

Studio!

Kernel Debugging, IBM HRL LKDSG 2003 – p.7/21

http://www.iglu.org.il/lxr/


Use the source
The two oldest and most useful debugging aids are

• Your brain.
• printf.

Use them! the kernel gives you printk, which

• Can be called from interrupt context.
• Behaves mostly like printf, except that it doesn’t

support floating point.

Kernel Debugging, IBM HRL LKDSG 2003 – p.8/21



Use the Source (cont)
Use something like this snippet to turn printks on and
off depending on whether you’re building a debug or
relase build.

#ifdef DEBUG_FOO

#define CDBG(msg, args...) do { \

printk(KERN_DEBUG "[%s] " msg , __func__ , ##args );\

} while (0)

#else /* !defined(DEBUG_FOO) */

#define CDBG(msg, args...) do {} while (0)

#endif /* !defined(DEBUG_FOO) */

Kernel Debugging, IBM HRL LKDSG 2003 – p.9/21



Use the Source (cont)
• For really tough bugs, write code to solve bugs.

Don’t be afraid to insert new kernel modules to
monitor or affect your primary development
focus.

• Code defensively. Whenever you suspect
memory overwrites or use after free, use memory
poisoning.

• Enable all of the kernel debug options - they will
find your bugs for you!

• #define assert(x) do { if (!(x)) BUG(); } while (0)

• Linux 2.5 has BUG_ON().

Kernel Debugging, IBM HRL LKDSG 2003 – p.10/21



Kernel Debuggers
Linux has several kernel debuggers, none of which are
in the main tree (for the time being). The two most
common are

• kdb - http://oss.sgi.com/projects/kdb
• kgdb - http://kgdb.sourceforge.net/

Kernel Debugging, IBM HRL LKDSG 2003 – p.11/21

http://oss.sgi.com/projects/kdb
http://kgdb.sourceforge.net/


KGDB
• Requires two machines, a slave and a master.
• gdb runs on the master, controlling a gdb stub in

the slave kernel via the serial port.
• When an OOPS or a panic occurs, you drop into

the debugger.
• Very very useful for the situations where you

dump core in an interrupt handler and no oops
data makes it to disk - you drop into the debugger
with the correct backtrace.

Kernel Debugging, IBM HRL LKDSG 2003 – p.12/21



ksymoops
• Read Documentation/oops-tracing.txt
• Install ksymoops, available from

ftp://ftp.il.kernel.org
• Run it on the oops (get it from the logs, serial

console, or copy from the screen).
• ksymoops gives you a human readable back trace.
• Sometimes the oops data can be trusted ("easy"

bugs like a NULL pointer dereference) and
sometimes it’s no more than a general hint to
what is going wrong (memory corruption
overwrite EIP).

Kernel Debugging, IBM HRL LKDSG 2003 – p.13/21

ftp://ftp.il.kernel.org


ksymoops(cont)
• Linux 2.5 includes an "in kernel" oops tracer,

called kksymoops. Don’t forget to enable it when
compiling your new 2.5 kernel!

• It can be found under Kernel Hacking -> Load all
symbols for debugging/kksymoops
(CONFIG_KALLSYMS).

Kernel Debugging, IBM HRL LKDSG 2003 – p.14/21



ksymoops(cont)
Unable to handle kernel NULL pointer dereference at virtual address 00000000

printing eip:

c014a9cc

*pde = 00000000

Oops: 0002

CPU: 0

EIP: 0060:[<c014a9cc>] Not tainted

EFLAGS: 00010202

EIP is at sys_open+0x2c/0x90

eax: 00000001 ebx: 00000001 ecx: ffffffff edx: 00000000

esi: bffffaec edi: ce07e000 ebp: cdbcffbc esp: cdbcffb0

ds: 007b es: 007b ss: 0068

Process cat (pid: 862, threadinfo=cdbce000 task=cdcf7380)

Stack: bffffaec 40013020 bffff9b4 cdbce000 c010adc7 bffffaec 00008000 00000000

40013020 bffff9b4 bffff868 00000005 0000007b 0000007b 00000005 420dabd4

00000073 00000246 bffff848 0000007b

Call Trace:

[<c010adc7>] syscall_call+0x7/0xb

Code: 89 1d 00 00 00 00 e8 59 fc ff ff 89 c6 85 f6 78 2f 8b 4d 10

Kernel Debugging, IBM HRL LKDSG 2003 – p.15/21



LKCD
• LKCD - Linux Kernel Crash Dump
• http://lkcd.sf.net
• Saves a dump of the system’s state at the time the

dump occurs.
• A dump occurs when the kernel panics or oopses,

or when requested by the administrator.
• Must be configured before the crash occurs!

Kernel Debugging, IBM HRL LKDSG 2003 – p.16/21

http://lkcd.sf.net


Making sense of kernel data
• System.map - kernel function addresses
• /proc/kcore - image of system memory
• vmlinux - the uncompressed kernel, can be

disassembled using objdump(1).

Kernel Debugging, IBM HRL LKDSG 2003 – p.17/21



User Mode Linux
• For some kinds of kernel development

(architecture independent, file systems, memory
management), using UML is a life saver.

• Allows you to run the Linux kernel in user space,
and debug it with gdb.

• Work is underway at making valgrind work on
UML, which is expected to find many bugs.

Kernel Debugging, IBM HRL LKDSG 2003 – p.18/21



Magic SysRq
• More info at Documentation/sysrq.txt.
• a ’magical’ key combo you can hit which the

kernel will respond to regardless of whatever else
it is doing, unless it is completely locked up.

• CONFIG_MAGIC_SYSRQ, echo “1” >
/proc/sys/kernel/sysrq

• On x86, press ’ALT-SysRq-<command key>’.
The sysrq key is also known as the ’Print Screen’
key.

Kernel Debugging, IBM HRL LKDSG 2003 – p.19/21



Magic SysRq(cont)
• ’b’ - Will immediately reboot the system without

syncing or unmounting your disks.
• ’o’ - Will shut your system off (if configured and

supported).
• ’s’ - Will attempt to sync all mounted filesystems.
• ’p’ - Will dump the current registers and flags to

your console.
• ’t’ - Will dump a list of current tasks and their

information to your console.
• ’m’ - Will dump current memory info to your

console.
• ’h’ - The most important key - will display help

;-)
Kernel Debugging, IBM HRL LKDSG 2003 – p.20/21



Happy Hacking!
Questions? Comments?

Happy Oopsing!

Kernel Debugging, IBM HRL LKDSG 2003 – p.21/21


	Kernel Debugging - Why?
	Kernel Debugging - Why?(cont)
	Broad Overview of the Kernel
	Broad Kernel Overview (cont)
	Read the Source, Luke
	Read the Source, Luke (cont)
	Use the source
	Use the Source (cont)
	Use the Source (cont)
	Kernel Debuggers
	KGDB
	ksymoops
	ksymoops(cont)
	ksymoops(cont)
	LKCD
	Making sense of kernel data
	User Mode Linux
	Magic SysRq
	Magic SysRq(cont)
	Happy Hacking!

