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Kernel Debugging - Why?
• Why would we want to debug the kernel? after

all, it’s the one part of the system that we never
have to worry about, because it always works.

• Well, no.
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Kernel Debugging - Why?(cont)
• Because a driver is not working as well as it

should, or is not working at all.
• Because we have a school or work project.
• Because the kernel is crashing, and we don’t

know why.
• Because we want to learn how the kernel works.
• Because it’s fun! Real men hack kernels ;-)
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Broad Overview of the Kernel
• Over a million lines of code.

• Documentation/
• drivers/
• kernel/
• arch/
• fs/
• lib/
• mm/
• net/
• Others: security/ include/ sound/ init/ usr/

crypto/ ipc/
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Broad Kernel Overview (cont)
• Supports runtime loading and unloading of

additional code (kernel modules).
• Configured using Kconfig, a domain specifc

configuration language.
• Built using kbuild, a collection of complex

Makefiles.
• Heavily dependant on gcc and gccisms. Does not

use or link with user space libraries, although
supplies many of them - sprintf, memcpy, strlen,
printk (not printf!).
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Read the Source, Luke
• The source is there - use it to figure out what’s

going on.
• Linux kernel developers frown upon binary only

modules, because they don’t have the source and
thus cannot debug them.

• Later kernels include facilities to mark when a
binary only module has been loaded (“tainted
kernels”). Kernel developers will kindly refuse to
help debug a problem when a kernel has been
tainted.
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Read the Source, Luke (cont)
Use the right tools for the job. Tools to navigate the
source include:

• lxr - http://www.iglu.org.il/lxr/
• find and grep
• ctags, etags, gtags and their ilk.

Use a good IDE

• emacs
• vi
• One brave soul I heard about used MS Visual

Studio!
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Use the source
The two oldest and most useful debugging aids are

• Your brain.
• printf.

Use them! the kernel gives you printk, which

• Can be called from interrupt context.
• Behaves mostly like printf, except that it doesn’t

support floating point.
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Use the Source (cont)
Use something like this snippet to turn printks on and
off depending on whether you’re building a debug or
relase build.

#ifdef DEBUG_FOO

#define CDBG(msg, args...) do { \

printk(KERN_DEBUG "[%s] " msg , __func__ , ##args );\

} while (0)

#else /* !defined(DEBUG_FOO) */

#define CDBG(msg, args...) do {} while (0)

#endif /* !defined(DEBUG_FOO) */

Kernel Debugging, IBM HRL LKDSG 2003 – p.9/21



Use the Source (cont)
• For really tough bugs, write code to solve bugs.

Don’t be afraid to insert new kernel modules to
monitor or affect your primary development
focus.

• Code defensively. Whenever you suspect
memory overwrites or use after free, use memory
poisoning.

• Enable all of the kernel debug options - they will
find your bugs for you!

• #define assert(x) do { if (!(x)) BUG(); } while (0)

• Linux 2.5 has BUG_ON().

Kernel Debugging, IBM HRL LKDSG 2003 – p.10/21



Kernel Debuggers
Linux has several kernel debuggers, none of which are
in the main tree (for the time being). The two most
common are

• kdb - http://oss.sgi.com/projects/kdb
• kgdb - http://kgdb.sourceforge.net/
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KGDB
• Requires two machines, a slave and a master.
• gdb runs on the master, controlling a gdb stub in

the slave kernel via the serial port.
• When an OOPS or a panic occurs, you drop into

the debugger.
• Very very useful for the situations where you

dump core in an interrupt handler and no oops
data makes it to disk - you drop into the debugger
with the correct backtrace.
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ksymoops
• Read Documentation/oops-tracing.txt
• Install ksymoops, available from

ftp://ftp.il.kernel.org
• Run it on the oops (get it from the logs, serial

console, or copy from the screen).
• ksymoops gives you a human readable back trace.
• Sometimes the oops data can be trusted ("easy"

bugs like a NULL pointer dereference) and
sometimes it’s no more than a general hint to
what is going wrong (memory corruption
overwrite EIP).
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ksymoops(cont)
• Linux 2.5 includes an "in kernel" oops tracer,

called kksymoops. Don’t forget to enable it when
compiling your new 2.5 kernel!

• It can be found under Kernel Hacking -> Load all
symbols for debugging/kksymoops
(CONFIG_KALLSYMS).
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ksymoops(cont)
Unable to handle kernel NULL pointer dereference at virtual address 00000000

printing eip:

c014a9cc

*pde = 00000000

Oops: 0002

CPU: 0

EIP: 0060:[<c014a9cc>] Not tainted

EFLAGS: 00010202

EIP is at sys_open+0x2c/0x90

eax: 00000001 ebx: 00000001 ecx: ffffffff edx: 00000000

esi: bffffaec edi: ce07e000 ebp: cdbcffbc esp: cdbcffb0

ds: 007b es: 007b ss: 0068

Process cat (pid: 862, threadinfo=cdbce000 task=cdcf7380)

Stack: bffffaec 40013020 bffff9b4 cdbce000 c010adc7 bffffaec 00008000 00000000

40013020 bffff9b4 bffff868 00000005 0000007b 0000007b 00000005 420dabd4

00000073 00000246 bffff848 0000007b

Call Trace:

[<c010adc7>] syscall_call+0x7/0xb

Code: 89 1d 00 00 00 00 e8 59 fc ff ff 89 c6 85 f6 78 2f 8b 4d 10
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LKCD
• LKCD - Linux Kernel Crash Dump
• http://lkcd.sf.net
• Saves a dump of the system’s state at the time the

dump occurs.
• A dump occurs when the kernel panics or oopses,

or when requested by the administrator.
• Must be configured before the crash occurs!
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Making sense of kernel data
• System.map - kernel function addresses
• /proc/kcore - image of system memory
• vmlinux - the uncompressed kernel, can be

disassembled using objdump(1).
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User Mode Linux
• For some kinds of kernel development

(architecture independent, file systems, memory
management), using UML is a life saver.

• Allows you to run the Linux kernel in user space,
and debug it with gdb.

• Work is underway at making valgrind work on
UML, which is expected to find many bugs.
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Magic SysRq
• More info at Documentation/sysrq.txt.
• a ’magical’ key combo you can hit which the

kernel will respond to regardless of whatever else
it is doing, unless it is completely locked up.

• CONFIG_MAGIC_SYSRQ, echo “1” >
/proc/sys/kernel/sysrq

• On x86, press ’ALT-SysRq-<command key>’.
The sysrq key is also known as the ’Print Screen’
key.
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Magic SysRq(cont)
• ’b’ - Will immediately reboot the system without

syncing or unmounting your disks.
• ’o’ - Will shut your system off (if configured and

supported).
• ’s’ - Will attempt to sync all mounted filesystems.
• ’p’ - Will dump the current registers and flags to

your console.
• ’t’ - Will dump a list of current tasks and their

information to your console.
• ’m’ - Will dump current memory info to your

console.
• ’h’ - The most important key - will display help

;-)
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Happy Hacking!
Questions? Comments?

Happy Oopsing!
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