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Background: x86 machine virtualization

Running multiple different unmodified operating systems
Each in an isolated virtual machine
Simultaneously
On the x86 architecture
Many uses: live migration, record & replay, testing, security, . . .
Foundation of IaaS cloud computing
Used nearly everywhere
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The problem is performance

Machine virtualization can reduce performance by orders of
magnitude
[Adams06,Santos08,Ram09,Ben-Yehuda10,Amit11,. . . ]
Overhead limits use of virtualization in many scenarios
We would like to make it possible to use virtualization everywhere
Including I/O intensive workloads and nested workloads
Where does the overhead come from?
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The origin of overhead

Popek and Goldberg’s virtualization model [Popek74]: Trap and
emulate
Privileged instructions trap to the hypervisor
Hypervisor emulates their behavior
Traps cause an exit
I/O intensive workloads cause many exits
Nested workloads cause many exits
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What is nested x86 virtualization?

Running multiple unmodified
hypervisors
With their associated
unmodified VM’s
Simultaneously
On the x86 architecture
Which does not support
nesting in hardware. . .
. . . but does support a single
level of virtualization Hardware

Hypervisor

Guest
Hypervisor

Guest
OS

Guest
OS
Guest
OS

Guest
OS
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Why?

Operating systems are already hypervisors (Windows 7 with XP
mode, Linux/KVM)
Security: attack via or defend against hypervisor-level rootkits
such as Blue Pill
To be able to run other hypervisors in clouds
Co-design of x86 hardware and system software
Testing, demonstrating, debugging, live migration of hypervisors
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What is the Turtles project?

Efficient nested virtualization for VMX based on KVM
Runs multiple guest hypervisors, including VMware, Windows

“The Turtles Project: Design and Implementation of Nested Virtualization”,
Ben-Yehuda, Day, Dubitzky, Factor, Hare’El, Gordon, Liguori, Wasserman and
Yassour, OSDI ’10
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What is the Turtles project? (cont’)

Nested VMX virtualization for nested CPU virtualization
Multi-dimensional paging for nested MMU virtualization
Multi-level device assignment for nested I/O virtualization
Micro-optimizations to make it go fast

+ + =
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Theory of nested CPU virtualization

Trap and emulate[PopekGoldberg74] ⇒ it’s all about the traps
Single-level (x86) vs. multi-level (e.g., z/VM)
Single level ⇒ one hypervisor, many guests
Turtles approach: L0 multiplexes the hardware between L1 and L2,
running both as guests of L0—without either being aware of it
(Scheme generalized for n levels; Our focus is n=2)

Hardware

Host Hypervisor

Guest

Hardware

Host Hypervisor

Multiplexed on a single level Multiple logical levels

L0

L1

L2

L1

Guest
L2

Guest
L2

L0

Guest
L2L2

Guest    
Hypervisor

Guest
Hypervisor GuestGuest
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Nested VMX virtualization: flow

L0 runs L1 with VMCS0→1

L1 prepares VMCS1→2 and
executes vmlaunch
vmlaunch traps to L0

L0 merges VMCS’s:
VMCS0→1 merged with
VMCS1→2 is VMCS0→2

L0 launches L2

L2 causes a trap
L0 handles trap itself or
forwards it to L1

. . .
eventually, L0 resumes L2

repeat

Hardware

Host Hypervisor

Guest
OS

VMCS

Memory
Tables

VMCS

Memory
Tables

VMCS
Memory
Tables

L0

L1 L2

1-2 State

0-2 State0-1 State

Guest
Hypervisor
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Exit multiplication makes angry turtle angry

To handle a single L2 exit, L1 does many things: read and write
the VMCS, disable interrupts, . . .
Those operations can trap, leading to exit multiplication
Exit multiplication: a single L2 exit can cause 40-50 L1 exits!
Optimize: make a single exit fast and reduce frequency of exits

…
…

…

…

L0

L1

L2

L3

Two 
Levels

Three LevelsSingle 
Level
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Introduction to x86 MMU virtualization

x86 does page table walks in hardware
MMU has one currently active hardware page table
Bare metal ⇒ only needs one logical translation,
(virtual → physical)
Virtualization ⇒ needs two logical translations

1 Guest page table: (guest virt → guest phys)
2 Host page table: (guest phys → host phys)

. . . but MMU only knows to walk a single table!
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Solution: multi-dimensional paging
L2 virtual

L2 physical

L1 physical

L0 physical

GPT

EPT02

EPT12

EPT01

EPT table rarely changes; guest page table changes a lot
Compress three logical translations ⇒ two in hardware
L0 emulates EPT for L1

L0 uses EPT0→1 and EPT1→2 to construct EPT0→2

End result: a lot less exits!
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I/O virtualization via device emulation

GUEST

HOST

1

2

34

device
emulation

driver
device

driver
device

Emulation is usually the default [Sugerman01]
Works for unmodified guests out of the box
Very low performance, due to many exits on the I/O path
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I/O virtualization via paravirtualized devices

GUEST

HOST

driver

1

23

back−end

virtual
driver

front−end

virtualdevice
driver

Hypervisor aware drivers and “devices” [Barham03,Russell08]
Requires new guest drivers
Requires hypervisor involvement on the I/O path
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I/O virtualization via device assignment

GUEST

HOST

device
driver

Bypass the hypervisor on I/O path [Levasseur04,Ben-Yehuda06]
SR-IOV devices provide sharing in hardware
Better performance than paravirtual—but far from native
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Comparing I/O virtualization methods

IOV method throughput (Mb/s) CPU utilization
bare-metal 950 20%

device assignment 950 25%
paravirtual 950 50%
emulation 250 100%

netperf TCP_STREAM sender on 1Gb/s Ethernet (16K msgs)
Device assignment best performing option
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What does it mean, to do I/O?

Programmed I/O (in/out
instructions)
Memory-mapped I/O (loads
and stores)
Direct memory access (DMA)
Interrupts
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Direct memory access (DMA)

All modern devices access memory directly
On bare-metal:

A trusted driver gives its device an address
Device reads or writes that address

Protection problem: guest drivers are not trusted
Translation problem: guest memory 6= host memory
Direct access: the guest bypasses the host
What to do?
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IOMMU
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The IOMMU mapping memory/performance tradeoff

When does the host map and unmap translation entries?
Direct mapping up-front on virtual machine creation: all memory is
pinned, no intra-guest protection
During run-time: high cost in performance
We want: direct mapping performance, intra-guest protection,
minimal pinning
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Multi-level device assignment

With nested 3x3 options for I/O virtualization (L2 ⇔ L1 ⇔ L0)
Multi-level device assignment means giving an L2 guest direct
access to L0’s devices, safely bypassing both L0 and L1

L1 
hypervisor

physical 
device

L0 
hypervisor

L2  device 
driver

MMIOs and PIOs

L0 IOMMUL1 IOMMU

Device DMA via 
platform IOMMU

Requires that L0 emulate an IOMMU efficiently
L0 compresses multiple IOMMU translations onto the single
hardware IOMMU page table
L2 programs the device directly
Device DMA’s into L2 memory space directly
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vIOMMU: efficient IOMMU emulation

Emulate an IOMMU so that we
know when to map and unmap:
enable memory-overcommitment,
intra-guest protection
Use a sidecore [Kumar07] for
efficient emulation: avoid costly
exits by running emulation on
another core in parallel
Optimistic teardown: relax
protection to increase
performance by caching
translation entries
vIOMMU provides high
performance with intra-guest
protection and minimal pinning
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“vIOMMU: Efficient IOMMU Emulation”, Amit, Ben-Yehuda, Schuster, Tsafrir,
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Micro-optimizations

Goal: reduce world switch overheads
Reduce cost of single exit by focus on VMCS merges:

Keep VMCS fields in processor encoding
Partial updates instead of whole-sale copying
Copy multiple fields at once
Some optimizations not safe according to spec

Reduce frequency of exits—focus on vmread and vmwrite
Avoid the exit multiplier effect
Loads/stores vs. architected trapping instructions
Binary patching?
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Nested VMX support in KVM

Date: Mon, 16 May 2011 22:43:54 +0300
From: Nadav Har’El <nyh (at) il.ibm.com>
To: kvm [at] vger.kernel.org
Cc: gleb [at] redhat.com, avi [at] redhat.com
Subject: [PATCH 0/31] nVMX: Nested VMX, v10

Hi,

This is the tenth iteration of the nested VMX patch set. Improvements in this
version over the previous one include:

* Fix the code which did not fully maintain a list of all VMCSs loaded on
each CPU. (Avi, this was the big thing that bothered you in the previous
version).

* Add nested-entry-time (L1->L2) verification of control fields of vmcs12 -
procbased, pinbased, entry, exit and secondary controls - compared to the
capability MSRs which we advertise to L1.

[many other changes trimmed]

This new set of patches applies to the current KVM trunk (I checked with
6f1bd0daae731ff07f4755b4f56730a6e4a3c1cb).
If you wish, you can also check out an already-patched version of KVM from
branch "nvmx10" of the repository:

git://github.com/nyh/kvm-nested-vmx.git
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Windows XP on KVM L1 on KVM L0
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Linux on VMware L1 on KVM L0
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Experimental Setup

Running Linux, Windows,
KVM, VMware, SMP, . . .
Macro workloads:

kernbench
SPECjbb
netperf

Multi-dimensional paging?
Multi-level device assignment?
KVM as L1 vs. VMware as L1?

See paper for full experimental
details and more benchmarks
and analysis
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Macro: SPECjbb and kernbench

kernbench
Host Guest Nested NestedDRW

Run time 324.3 355 406.3 391.5
% overhead vs. host - 9.5 25.3 20.7
% overhead vs. guest - - 14.5 10.3

SPECjbb
Host Guest Nested NestedDRW

Score 90493 83599 77065 78347
% degradation vs. host - 7.6 14.8 13.4
% degradation vs. guest - - 7.8 6.3

Table: kernbench and SPECjbb results

Exit multiplication effect not as bad as we feared

Direct vmread and vmwrite (DRW) give an immediate boost

Take-away: each level of virtualization adds approximately the same
overhead!
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Macro: multi-dimensional paging

Shadow on EPT
Multi−dimensional paging
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Impact of multi-dimensional paging depends on rate of page faults
Shadow-on-EPT: every L2 page fault causes L1 multiple exits
Multi-dimensional paging: only EPT violations cause L1 exits
EPT table rarely changes: #(EPT violations) << #(page faults)
Multi-dimensional paging huge win for page-fault intensive
kernbench
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Macro: multi-level device assignment

throughput (Mbps)
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Benchmark: netperf TCP_STREAM (transmit)
Multi-level device assignment best performing option
But: native at 20%, multi-level device assignment at 60% (x3!)
Interrupts considered harmful, cause exit multiplication
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Macro: multi-level device assignment (sans interrupts)
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Message size (netperf -m)

L0 (bare metal)
L2 (direct/direct)
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What if we could deliver device interrupts directly to L2?
Only 7% difference between native and nested guest!
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Micro: synthetic worst case CPUID loop
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CPUID running in a tight loop is not a real-world workload!
Went from 30x worse to “only” 6x worse
A nested exit is still expensive—minimize both single exit
cost and frequency of exits
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Interim conclusions: Turtles

Efficient nested x86
virtualization is challenging but
feasible
A whole new ballpark opening
up many exciting
applications—security, cloud,
architecture, . . .
Current overhead of 6-14%

Negligible for some
workloads, not yet for others
Work in progress—expect at
most 5% eventually

Code is available
Why Turtles?
It’s turtles all the way down
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Back to interrupts: How bad is it?

netperf TCP_STREAM
sender on 10Gb/s Ethernet
with 256 byte messages
Using device assignment with
direct mapping in the IOMMU
Only achieves 60% of
bare-metal performance
Same results for memcached
and apache

Where does the rest go?
Interrupts: approximately
49,000 interrupts per second
with Linux
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Interrupts cause exits

Each interrupt causes at least
two exits
One to deliver
One to signal completion

Guest

Hypervisor

I/O Device

Interrupts

Virtual 
Interrupts

EOI 
I/O APIC

End of 
Interrupt 
(EOI)
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ELI: Exitless Interrupts

bare-metal

Baseline

guest

hypervisor

(time)
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delivery
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Physical
Interrupt

Interrupt 
Completion
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(b)

(c)

Interrupt 
Injection

Interrupt 
Completion

(d)

ELI: direct interrupts for unmodified, untrusted guests

“ELI: Bare-Metal Performance for I/O Virtualization”, Gordon, Amit, Hare’El,
Ben-Yehuda, Landau, Schuster, Tsafrir, ASPLOS ’12
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Background: interrupts

IDTIDTR

Limit

Address

IDT Entry

IDT Entry

…

IDT Entry

Vector 1

Vector n

Vector 2

Interrupt
Descriptor
Table

IDT
Register

Interrupt handlers

I/O devices raise interrupts
CPU temporarily stops the currently executing code
CPU jumps to a pre-specified interrupt handler
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ELI: delivery

Shadow
IDT

Hypervisor

Shadow
IDT

Interrupt
Handler

Assigned
Interrupt

Physical
Interrupt

Non-assigned
Interrupt
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Guest
IDT
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IDT Entry

IDT Entry

…

IDT Entry

P=0

P=1

P=0

Handler

#NP

#NP

IDT Entry
#GP

IDTR
Limit

All interrupts are delivered directly to the guest
Host and other guests’ interrupts are bounced back to the host
. . . without the guest being aware of it
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ELI: signaling completion

Guests signal interrupt completions by writing to the Local
Advance Programmable Interrupt Controller (LAPIC)
End-of-Interrupt (EOI) register
Old LAPIC: hypervisor traps load/stores to LAPIC page
x2APIC: hypervisor can trap specific registers

Signaling completion without trapping requires x2APIC
ELI gives the guest direct access only to the EOI register
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ELI: threat model

Threats: malicious guests might try to:
keep interrupts disabled
signal invalid completions
consume other guests or host interrupts
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ELI: protection

VMX preemption timer to force exits instead of timer interrupts
Ignore spurious EOIs
Protect critical interrupts by:

Delivering them to a non-ELI core if available
Redirecting them as NMIs→unconditional exit
Use IDTR limit to force #GP exits on critical interrupts
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Evaluation: netperf

Exits/sec
102,000 800

Time in guest
60% 98%

+ -

- +

bare-metal
performance!
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Evaluation: apache

Exits/sec
91,000 1,100

Time in guest
65% 97%

+ -

- +

bare-metal
performance!
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Evaluation: memcached

Exits/sec
123,000 1,000

Time in guest
60% 100%

+ -

- +

bare-metal
performance!
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Conclusions: ELI

Achievement unlocked: bare-metal performance for x86
. . . if they use device assignment
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The saga continues: ELVIS at SYSTOR
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Thank you! Questions?
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Hardware wishlist?

For nested virtualization: “sie”-like functionality
For general virtualization performance: fast inter-core exits, i.e.,
host-to-guest and guest-to-host inter-core notifications
For I/O: IOMMU with I/O page faults (PRI)
In general: better chipset-level visibility. A cycle-accurate
simulator for I/O would be really nice. . .
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