
Bare-Metal Performance for x86 Virtualization

Muli Ben-Yehuda

Technion & IBM Research

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 1 / 49

Background: x86 machine virtualization

Running multiple different unmodified operating systems
Each in an isolated virtual machine
Simultaneously
On the x86 architecture
Many uses: live migration, record & replay, testing, security, . . .
Foundation of IaaS cloud computing
Used nearly everywhere

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 2 / 49

The problem is performance

Machine virtualization can reduce performance by orders of
magnitude
[Adams06,Santos08,Ram09,Ben-Yehuda10,Amit11,. . .]
Overhead limits use of virtualization in many scenarios
We would like to make it possible to use virtualization everywhere
Including I/O intensive workloads and nested workloads
Where does the overhead come from?

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 3 / 49

The origin of overhead

Popek and Goldberg’s virtualization model [Popek74]: Trap and
emulate
Privileged instructions trap to the hypervisor
Hypervisor emulates their behavior
Traps cause an exit
I/O intensive workloads cause many exits
Nested workloads cause many exits

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 4 / 49

What is nested x86 virtualization?

Running multiple unmodified
hypervisors
With their associated
unmodified VM’s
Simultaneously
On the x86 architecture
Which does not support
nesting in hardware. . .
. . . but does support a single
level of virtualization Hardware

Hypervisor

Guest
Hypervisor

Guest
OS

Guest
OS
Guest
OS

Guest
OS

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 5 / 49

Why?

Operating systems are already hypervisors (Windows 7 with XP
mode, Linux/KVM)
Security: attack via or defend against hypervisor-level rootkits
such as Blue Pill
To be able to run other hypervisors in clouds
Co-design of x86 hardware and system software
Testing, demonstrating, debugging, live migration of hypervisors

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 6 / 49

What is the Turtles project?

Efficient nested virtualization for VMX based on KVM
Runs multiple guest hypervisors, including VMware, Windows

“The Turtles Project: Design and Implementation of Nested Virtualization”,
Ben-Yehuda, Day, Dubitzky, Factor, Hare’El, Gordon, Liguori, Wasserman and
Yassour, OSDI ’10

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 7 / 49

What is the Turtles project? (cont’)

Nested VMX virtualization for nested CPU virtualization
Multi-dimensional paging for nested MMU virtualization
Multi-level device assignment for nested I/O virtualization
Micro-optimizations to make it go fast

+ + =

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 8 / 49

Theory of nested CPU virtualization

Trap and emulate[PopekGoldberg74] ⇒ it’s all about the traps
Single-level (x86) vs. multi-level (e.g., z/VM)
Single level ⇒ one hypervisor, many guests
Turtles approach: L0 multiplexes the hardware between L1 and L2,
running both as guests of L0—without either being aware of it
(Scheme generalized for n levels; Our focus is n=2)

Hardware

Host Hypervisor

Guest

Hardware

Host Hypervisor

Multiplexed on a single level Multiple logical levels

L0

L1

L2

L1

Guest
L2

Guest
L2

L0

Guest
L2L2

Guest
Hypervisor

Guest
Hypervisor GuestGuest

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 9 / 49

Nested VMX virtualization: flow

L0 runs L1 with VMCS0→1

L1 prepares VMCS1→2 and
executes vmlaunch
vmlaunch traps to L0

L0 merges VMCS’s:
VMCS0→1 merged with
VMCS1→2 is VMCS0→2

L0 launches L2

L2 causes a trap
L0 handles trap itself or
forwards it to L1

. . .
eventually, L0 resumes L2

repeat

Hardware

Host Hypervisor

Guest
OS

VMCS

Memory
Tables

VMCS

Memory
Tables

VMCS
Memory
Tables

L0

L1 L2

1-2 State

0-2 State0-1 State

Guest
Hypervisor

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 10 / 49

Exit multiplication makes angry turtle angry

To handle a single L2 exit, L1 does many things: read and write
the VMCS, disable interrupts, . . .
Those operations can trap, leading to exit multiplication
Exit multiplication: a single L2 exit can cause 40-50 L1 exits!
Optimize: make a single exit fast and reduce frequency of exits

…
…

…

…

L0

L1

L2

L3

Two
Levels

Three LevelsSingle
Level

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 11 / 49

Introduction to x86 MMU virtualization

x86 does page table walks in hardware
MMU has one currently active hardware page table
Bare metal ⇒ only needs one logical translation,
(virtual → physical)
Virtualization ⇒ needs two logical translations

1 Guest page table: (guest virt → guest phys)
2 Host page table: (guest phys → host phys)

. . . but MMU only knows to walk a single table!

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 12 / 49

Solution: multi-dimensional paging
L2 virtual

L2 physical

L1 physical

L0 physical

GPT

EPT02

EPT12

EPT01

EPT table rarely changes; guest page table changes a lot
Compress three logical translations ⇒ two in hardware
L0 emulates EPT for L1

L0 uses EPT0→1 and EPT1→2 to construct EPT0→2

End result: a lot less exits!
Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 13 / 49

I/O virtualization via device emulation

GUEST

HOST

1

2

34

device
emulation

driver
device

driver
device

Emulation is usually the default [Sugerman01]
Works for unmodified guests out of the box
Very low performance, due to many exits on the I/O path

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 14 / 49

I/O virtualization via paravirtualized devices

GUEST

HOST

driver

1

23

back−end

virtual
driver

front−end

virtualdevice
driver

Hypervisor aware drivers and “devices” [Barham03,Russell08]
Requires new guest drivers
Requires hypervisor involvement on the I/O path

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 15 / 49

I/O virtualization via device assignment

GUEST

HOST

device
driver

Bypass the hypervisor on I/O path [Levasseur04,Ben-Yehuda06]
SR-IOV devices provide sharing in hardware
Better performance than paravirtual—but far from native

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 16 / 49

Comparing I/O virtualization methods

IOV method throughput (Mb/s) CPU utilization
bare-metal 950 20%

device assignment 950 25%
paravirtual 950 50%
emulation 250 100%

netperf TCP_STREAM sender on 1Gb/s Ethernet (16K msgs)
Device assignment best performing option

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 17 / 49

What does it mean, to do I/O?

Programmed I/O (in/out
instructions)
Memory-mapped I/O (loads
and stores)
Direct memory access (DMA)
Interrupts

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 18 / 49

Direct memory access (DMA)

All modern devices access memory directly
On bare-metal:

A trusted driver gives its device an address
Device reads or writes that address

Protection problem: guest drivers are not trusted
Translation problem: guest memory 6= host memory
Direct access: the guest bypasses the host
What to do?

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 19 / 49

IOMMU

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 20 / 49

The IOMMU mapping memory/performance tradeoff

When does the host map and unmap translation entries?
Direct mapping up-front on virtual machine creation: all memory is
pinned, no intra-guest protection
During run-time: high cost in performance
We want: direct mapping performance, intra-guest protection,
minimal pinning

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 21 / 49

Multi-level device assignment

With nested 3x3 options for I/O virtualization (L2 ⇔ L1 ⇔ L0)
Multi-level device assignment means giving an L2 guest direct
access to L0’s devices, safely bypassing both L0 and L1

L1
hypervisor

physical
device

L0
hypervisor

L2 device
driver

MMIOs and PIOs

L0 IOMMUL1 IOMMU

Device DMA via
platform IOMMU

Requires that L0 emulate an IOMMU efficiently
L0 compresses multiple IOMMU translations onto the single
hardware IOMMU page table
L2 programs the device directly
Device DMA’s into L2 memory space directly

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 22 / 49

vIOMMU: efficient IOMMU emulation

Emulate an IOMMU so that we
know when to map and unmap:
enable memory-overcommitment,
intra-guest protection
Use a sidecore [Kumar07] for
efficient emulation: avoid costly
exits by running emulation on
another core in parallel
Optimistic teardown: relax
protection to increase
performance by caching
translation entries
vIOMMU provides high
performance with intra-guest
protection and minimal pinning

IOMMU

I/O Device

Memory

I/O Device
Driver

IOMMU
Mapping

Layer

Guest
Domain

Emulation
Domain
(Sidecore)

System
Domain

IOMMU
Emulation

(2) Update
Mappings Emul.

PTE

Physical
PTE

(6) Update
Mappings

I/O
Buffer

(9) IOVA
Access

(7) IOTLB Invalidations

Emul.
IOMMU
Regs.

(4) Poll

(3) IOTLB Invd.

(1)
Map / Unmap

 I/O Buffer

(11)
Physical
Access

(8) Transaction
to IOVA

(10)
Translate

(5) R
ead

“vIOMMU: Efficient IOMMU Emulation”, Amit, Ben-Yehuda, Schuster, Tsafrir,
USENIX ATC ’11Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 23 / 49

Micro-optimizations

Goal: reduce world switch overheads
Reduce cost of single exit by focus on VMCS merges:

Keep VMCS fields in processor encoding
Partial updates instead of whole-sale copying
Copy multiple fields at once
Some optimizations not safe according to spec

Reduce frequency of exits—focus on vmread and vmwrite
Avoid the exit multiplier effect
Loads/stores vs. architected trapping instructions
Binary patching?

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 24 / 49

Nested VMX support in KVM

Date: Mon, 16 May 2011 22:43:54 +0300
From: Nadav Har’El <nyh (at) il.ibm.com>
To: kvm [at] vger.kernel.org
Cc: gleb [at] redhat.com, avi [at] redhat.com
Subject: [PATCH 0/31] nVMX: Nested VMX, v10

Hi,

This is the tenth iteration of the nested VMX patch set. Improvements in this
version over the previous one include:

* Fix the code which did not fully maintain a list of all VMCSs loaded on
each CPU. (Avi, this was the big thing that bothered you in the previous
version).

* Add nested-entry-time (L1->L2) verification of control fields of vmcs12 -
procbased, pinbased, entry, exit and secondary controls - compared to the
capability MSRs which we advertise to L1.

[many other changes trimmed]

This new set of patches applies to the current KVM trunk (I checked with
6f1bd0daae731ff07f4755b4f56730a6e4a3c1cb).
If you wish, you can also check out an already-patched version of KVM from
branch "nvmx10" of the repository:

git://github.com/nyh/kvm-nested-vmx.git

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 25 / 49

Windows XP on KVM L1 on KVM L0

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 26 / 49

Linux on VMware L1 on KVM L0

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 27 / 49

Experimental Setup

Running Linux, Windows,
KVM, VMware, SMP, . . .
Macro workloads:

kernbench
SPECjbb
netperf

Multi-dimensional paging?
Multi-level device assignment?
KVM as L1 vs. VMware as L1?

See paper for full experimental
details and more benchmarks
and analysis

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 28 / 49

Macro: SPECjbb and kernbench

kernbench
Host Guest Nested NestedDRW

Run time 324.3 355 406.3 391.5
% overhead vs. host - 9.5 25.3 20.7
% overhead vs. guest - - 14.5 10.3

SPECjbb
Host Guest Nested NestedDRW

Score 90493 83599 77065 78347
% degradation vs. host - 7.6 14.8 13.4
% degradation vs. guest - - 7.8 6.3

Table: kernbench and SPECjbb results

Exit multiplication effect not as bad as we feared

Direct vmread and vmwrite (DRW) give an immediate boost

Take-away: each level of virtualization adds approximately the same
overhead!

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 29 / 49

Macro: multi-dimensional paging

Shadow on EPT
Multi−dimensional paging

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

kernbench specjbb netperf

Im
pr

ov
em

en
t r

ati
o

Impact of multi-dimensional paging depends on rate of page faults
Shadow-on-EPT: every L2 page fault causes L1 multiple exits
Multi-dimensional paging: only EPT violations cause L1 exits
EPT table rarely changes: #(EPT violations) << #(page faults)
Multi-dimensional paging huge win for page-fault intensive
kernbench

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 30 / 49

Macro: multi-level device assignment

throughput (Mbps)
%cpu

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1,000

native
single level guest

 emulation

single level guest

 virtio

single level guest

 direct access

nested guest
 emulation / emulation

nested guest
 virtio / emulation

nested guest
 virtio / virtio

nested guest
 direct / virtio

nested guest
 direct / direct

 0

 20

 40

 60

 80

 100

thr
oug

hpu
t (M

bps
)

%
cpu

Benchmark: netperf TCP_STREAM (transmit)
Multi-level device assignment best performing option
But: native at 20%, multi-level device assignment at 60% (x3!)
Interrupts considered harmful, cause exit multiplication

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 31 / 49

Macro: multi-level device assignment (sans interrupts)

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 16 32 64 128 256 512

Th
ro

ug
hp

ut
 (M

bp
s)

Message size (netperf -m)

L0 (bare metal)
L2 (direct/direct)
L2 (direct/virtio)

What if we could deliver device interrupts directly to L2?
Only 7% difference between native and nested guest!

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 32 / 49

Micro: synthetic worst case CPUID loop

L1

L0
cpu mode switch

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

1. Single Level

Guest

2. Nested Guest

3. Nested Guest

optimizations 3.5.1

4. Nested Guest

optimizations 3.5.2

5. Nested Guest

optimizations 3.5.1 & 3.5.2

CP
U

Cy
cle

s

CPUID running in a tight loop is not a real-world workload!
Went from 30x worse to “only” 6x worse
A nested exit is still expensive—minimize both single exit
cost and frequency of exits

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 33 / 49

Interim conclusions: Turtles

Efficient nested x86
virtualization is challenging but
feasible
A whole new ballpark opening
up many exciting
applications—security, cloud,
architecture, . . .
Current overhead of 6-14%

Negligible for some
workloads, not yet for others
Work in progress—expect at
most 5% eventually

Code is available
Why Turtles?
It’s turtles all the way down

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 34 / 49

Back to interrupts: How bad is it?

netperf TCP_STREAM
sender on 10Gb/s Ethernet
with 256 byte messages
Using device assignment with
direct mapping in the IOMMU
Only achieves 60% of
bare-metal performance
Same results for memcached
and apache

Where does the rest go?
Interrupts: approximately
49,000 interrupts per second
with Linux

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 35 / 49

Interrupts cause exits

Each interrupt causes at least
two exits
One to deliver
One to signal completion

Guest

Hypervisor

I/O Device

Interrupts

Virtual
Interrupts

EOI
I/O APIC

End of
Interrupt
(EOI)

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 36 / 49

ELI: Exitless Interrupts

bare-metal

Baseline

guest

hypervisor

(time)

ELI
delivery

guest

hypervisor

ELI
delivery &
completion

guest

hypervisor

Physical
Interrupt

Interrupt
Completion

(a)

(b)

(c)

Interrupt
Injection

Interrupt
Completion

(d)

ELI: direct interrupts for unmodified, untrusted guests

“ELI: Bare-Metal Performance for I/O Virtualization”, Gordon, Amit, Hare’El,
Ben-Yehuda, Landau, Schuster, Tsafrir, ASPLOS ’12

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 37 / 49

Background: interrupts

IDTIDTR

Limit

Address

IDT Entry

IDT Entry

…

IDT Entry

Vector 1

Vector n

Vector 2

Interrupt
Descriptor
Table

IDT
Register

Interrupt handlers

I/O devices raise interrupts
CPU temporarily stops the currently executing code
CPU jumps to a pre-specified interrupt handler

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 38 / 49

ELI: delivery

Shadow
IDT

Hypervisor

Shadow
IDT

Interrupt
Handler

Assigned
Interrupt

Physical
Interrupt

Non-assigned
Interrupt
(#NP/#GP exit)

ELI
Delivery

Guest
IDT

VM

IDT Entry

IDT Entry

…

IDT Entry

P=0

P=1

P=0

Handler

#NP

#NP

IDT Entry
#GP

IDTR
Limit

All interrupts are delivered directly to the guest
Host and other guests’ interrupts are bounced back to the host
. . . without the guest being aware of it

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 39 / 49

ELI: signaling completion

Guests signal interrupt completions by writing to the Local
Advance Programmable Interrupt Controller (LAPIC)
End-of-Interrupt (EOI) register
Old LAPIC: hypervisor traps load/stores to LAPIC page
x2APIC: hypervisor can trap specific registers

Signaling completion without trapping requires x2APIC
ELI gives the guest direct access only to the EOI register

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 40 / 49

ELI: threat model

Threats: malicious guests might try to:
keep interrupts disabled
signal invalid completions
consume other guests or host interrupts

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 41 / 49

ELI: protection

VMX preemption timer to force exits instead of timer interrupts
Ignore spurious EOIs
Protect critical interrupts by:

Delivering them to a non-ELI core if available
Redirecting them as NMIs→unconditional exit
Use IDTR limit to force #GP exits on critical interrupts

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 42 / 49

Evaluation: netperf

Exits/sec
102,000 800

Time in guest
60% 98%

+ -

- +

bare-metal
performance!

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 43 / 49

Evaluation: apache

Exits/sec
91,000 1,100

Time in guest
65% 97%

+ -

- +

bare-metal
performance!

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 44 / 49

Evaluation: memcached

Exits/sec
123,000 1,000

Time in guest
60% 100%

+ -

- +

bare-metal
performance!

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 45 / 49

Conclusions: ELI

Achievement unlocked: bare-metal performance for x86
. . . if they use device assignment

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 46 / 49

The saga continues: ELVIS at SYSTOR

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 47 / 49

Thank you! Questions?

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 48 / 49

Hardware wishlist?

For nested virtualization: “sie”-like functionality
For general virtualization performance: fast inter-core exits, i.e.,
host-to-guest and guest-to-host inter-core notifications
For I/O: IOMMU with I/O page faults (PRI)
In general: better chipset-level visibility. A cycle-accurate
simulator for I/O would be really nice. . .

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 49 / 49

