Bare-Metal Performance for x86 Virtualization

Muli Ben-Yehuda

Technion & IBM Research

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

Background: x86 machine virtualization

Simultaneously

On the x86 architecture
Many uses: live migration, record & replay, testing, security, . ..
Foundation of laaS cloud computing
Used nearly everywhere

Running multiple different unmodified operating systems
Each in an isolated virtual machine

OUR SERVERS ARE USING
TOO MUCH ELECTRICITY.
LJE NEED TO VIRTUALIZE.

Muli Ben-Yehuda (Technion & IBM Research)

scottadams Baol.com

www.dilbert.com

1 DID MY PART BY
READING ABOUT
VIRTUALIZATION IN
A TRADE JOURNAL. NOW!
YOU DO THE SOFTWARE
PART.

3208 ©2008Scott Adams. Inc./Dist. by UFS, Inc.

WHY IS YOUR PART
TAKING S0 LONG?

Bare-Metal Perf. for x86 Virtualization

Intel, Haifa, 2012

The problem is performance

@ Machine virtualization can reduce performance by orders of
magnitude
[Adams06,Santos08,Ram09,Ben-Yehuda10,Amit11,...]

@ Overhead limits use of virtualization in many scenarios

@ We would like to make it possible to use virtualization everywhere
@ Including I/O intensive workloads and nested workloads

@ Where does the overhead come from?

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 3/49

The origin of overhead

@ Popek and Goldberg’s virtualization model [Popek74]: Trap and
emulate

@ Privileged instructions trap to the hypervisor
@ Hypervisor emulates their behavior

@ Traps cause an exit

@ |/O intensive workloads cause many exits

@ Nested workloads cause many exits

baremetal _
N A ..

(t) — single core

virtualization |-

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 4/49

What is nested x86 virtualization?

@ Running multiple unmodified
. Guest Guest
hypervisors os os

@ With their associated
unmodified VM’s

@ Simultaneously - -

@ On the x86 architecture

@ Which does not support
nesting in hardware. ..

@ ...but does support a single
level of virtualization _

Hypervisor

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 5/49

@ Operating systems are already hypervisors (Windows 7 with XP
mode, Linux/KVM)

@ Security: attack via or defend against hypervisor-level rootkits
such as Blue Pill

@ To be able to run other hypervisors in clouds
@ Co-design of x86 hardware and system software
@ Testing, demonstrating, debugging, live migration of hypervisors

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 6/49

What is the Turtles project?

Qg

Enic Turtles

L - »
i
-

@ Efficient nested virtualization for VMX based on KVM
@ Runs multiple guest hypervisors, including VMware, Windows

“The Turtles Project: Design and Implementation of Nested Virtualization”,
Ben-Yehuda, Day, Dubitzky, Factor, Hare’El, Gordon, Liguori, Wasserman and
Yassour, OSDI '10

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

What is the Turtles project? (cont’)

@ Nested VMX virtualization for nested CPU virtualization
@ Multi-dimensional paging for nested MMU virtualization
@ Multi-level device assignment for nested 1/O virtualization
@ Micro-optimizations to make it go fast

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

Theory of nested CPU virtualization

@ Trap and emulate[PopekGoldberg74] = it’s all about the traps

@ Single-level (x86) vs. multi-level (e.g., zZ/VM)

@ Single level = one hypervisor, many guests

@ Turtles approach: Ly multiplexes the hardware between L and Lo,
running both as guests of Lo—without either being aware of it

@ (Scheme generalized for n levels; Our focus is n=2)

' Guest E i Guest H
H - Hypervisor H Guest \| Hypervisor Guest| JGuest]: | Guest
HIES! ! H H
; : |
' H

Multiple logical levels Multiplexed on a single level

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 9/49

Nested VMX virtualization: flow

@ Lo runs Ly with VMCSg_,1
@ L4 prepares VvMCS4_,» and

executes vmlaunch Guest

; 08
@ vmlaunch trapsto Lg Guest
s Hypervisor
@ Ly merges VMCS’s: . —
. lemor ¥ e
VMCSp_,1 merged with Tobks :|

VMCS1_2 IS VMCSq_,o
° LO IaunCheS L2 0-1 State VNCS Memory Memory 0-2 State
Tables Tables
@ L, causes atrap

@ Lo handles trap itself or
forwards it to L+

° . _
@ eventually, Ly resumes Lo

@ repeat

Host Hypervisor

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 10/49

Exit multiplication makes angry turtle angry

@ To handle a single L, exit, Ly does many things: read and write
the vMmCS, disable interrupts, . ..

@ Those operations can trap, leading to exit multiplication

@ Exit multiplication: a single L, exit can cause 40-50 L, exits!

@ Optimize: make a single exit fast and reduce frequency of exits

L/
i

Single Two Three Levels
Level Levels

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 11/49

Introduction to x86 MMU virtualization

@ x86 does page table walks in hardware
@ MMU has one currently active hardware page table

@ Bare metal = only needs one logical translation,
(virtual — physical)
@ Virtualization = needs two logical translations
@ Guest page table: (guest virt — guest phys)
@ Host page table: (guest phys — host phys)

@ ...but MMU only knows to walk a single table!

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

Solution: multi-dimensional paging

L, virtual
GPT
L, physical
EPT12
L, physical
7 EPTO02
EPTO1

EPT table rarely changes; guest page table changes a lot
Compress three logical translations = two in hardware
Lo emulates EPT for L4

Lo uses EPTy_,1 and EPT4_,» to construct EPTq_,»

End result: a lot less exits!

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

I/O virtualization via device emulation

HOST
GUEST
////////////// 1 gevice
......................... Se river
~ ~ . . 2
: N :
Ty ——— SN 5T emuaion

@ Emulation is usually the default [Sugerman01]
@ Works for unmodified guests out of the box
@ Very low performance, due to many exits on the 1/0 path

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

I/O virtualization via paravirtualized devices

HOST
GUEST
front—end
virtual
driver
1
i back—end
/////////////// L~ device virtual
_________________________ 3 driver 2 driver

@ Hypervisor aware drivers and “devices” [Barham03,Russell08]
@ Requires new guest drivers
@ Requires hypervisor involvement on the 1/O path

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 15/49

I/O virtualization via device assignment

HOST

GUEST

device
driver

///////////////

@ Bypass the hypervisor on I/O path [Levasseur04,Ben-Yehuda06]
@ SR-IQOV devices provide sharing in hardware
@ Better performance than paravirtual—but far from native

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 16 /49

Comparing /O virtualization methods

IOV method throughput (Mb/s) CPU utilization

bare-metal 950 20%
device assignment 950 25%
paravirtual 950 50%
emulation 250 100%

@ netperf TCP_STREAM sender on 1Gb/s Ethernet (16K msgs)
@ Device assignment best performing option

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 17/ 49

What does it mean, to do I/O?

@ Programmed 1/O (in/out
instructions)

@ Memory-mapped I/O (loads
and stores)

@ Direct memory access (DMA)
@ Interrupts

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 18/49

Direct memory access (DMA)

@ All modern devices access memory directly
@ On bare-metal:
o Atrusted driver gives its device an address
@ Device reads or writes that address

@ Protection problem: guest drivers are not trusted

@ Translation problem: guest memory # host memory
@ Direct access: the guest bypasses the host

@ What to do?

e —
(ntel;

Corg=p
< Extray,
ot g,

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

IOMMU

Main memory

TPhysicaI add ressesT
N a8

- 1OMMU el MMU

" J : " v,

Device aFdresses Virtual aFdresses

Device CPU

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 20/49

The IOMMU mapping memory/performance tradeoff

VT-d Hardware Overview

DMA Requests

10 Virtual

Device ID s Lenath

4aKB Page
Tables

Address Translation
h Structures for

reition: S
Partitioning
P Structures

Address Translation
Structures for
Domain B

Memory Access with Host Memory-resident 10 Partitioning &
Physical Address Translation Structures

@ When does the host map and unmap translation entries?

@ Direct mapping up-front on virtual machine creation: all memory is
pinned, no intra-guest protection

@ During run-time: high cost in performance

@ We want: direct mapping performance, intra-guest protection,
minimal pinning

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 21/49

Multi-level device assignment

@ With nested 3x3 options for I/O virtualization (L, < Ly < Lg)
@ Multi-level device assignment means giving an L, guest direct
access to Lg’s devices, safely bypassing both Ly and L4

MMIOs and PIOSs

@ Requires that Ly emulate an IOMMU efficiently

@ Ly compresses multiple IOMMU translations onto the single
hardware IOMMU page table

@ L, programs the device directly

@ Device DMA’s into L, memory space directly

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

vIOMMU: efficient IOMMU emulation

@ Emulate an IOMMU so that we

know when to map and unmap: Suest Emuition Systom
enable memory-overcommitment, (Sidecore)
. . Memory
- (2)Up‘daie
intra gu.est protection [] xD
@ Use a sidecore [Kumar07] for Lyer” 10718 inve —
efficient emulation: avoid costly P e R

(6) Update

exits by running emulation on
another core in parallel
1)

@ Optimistic teardown: relax o Buter
protection to increase
performance by caching

translation entries ﬂ
@ vIOMMU provides high b T

performance with intra-guest
protection and minimal pinning
“vIOMMU: Efficient IOMMU Emulation”, Amit, Ben-Yehuda, Schuster, Tsafrir,

Emulation

1o
Buffer (10)
Translate

1)
Physical
Access

1/0 Device

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 23/49

Micro-optimizations

@ Goal: reduce world switch overheads
@ Reduce cost of single exit by focus on VMCS merges:
o Keep VMCS fields in processor encoding
e Partial updates instead of whole-sale copying
e Copy multiple fields at once
e Some optimizations not safe according to spec
@ Reduce frequency of exits—focus on vmread and vmwrite
e Avoid the exit multiplier effect
o Loads/stores vs. architected trapping instructions
e Binary patching?

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

Nested VMX support in KVM

Date: Mon, 16 May 2011 22:43:54 +0300

From: Nadav Har’El <nyh (at) il.ibm.com>

To: kvm [at] vger.kernel.org

Cc: gleb [at] redhat.com, avi [at] redhat.com
Subject: [PATCH 0/31] nVMX: Nested VMX, v10

Hi,

This is the tenth iteration of the nested VMX patch set. Improvements in this
version over the previous one include:

* Fix the code which did not fully maintain a list of all VMCSs loaded on
each CPU. (Avi, this was the big thing that bothered you in the previous
version) .

*

Add nested-entry-time (L1->L2) verification of control fields of vmecsl2 -
procbased, pinbased, entry, exit and secondary controls - compared to the
capability MSRs which we advertise to L1.

[many other changes trimmed]

This new set of patches applies to the current KVM trunk (I checked with
6f1bd0daae731ff07£4755b4£56730a6ed4a3clchb) .
If you wish, you can also check out an already-patched version of KVM from
branch "nvmx10" of the repository:

git://github.com/nyh/kvm-nested-vmx.git

Intel, Haifa, 2012

Windows XP on KVM L on KVM L,

806cddg BAppllcatlnns Places System @

__J My Documents

75 My Recent Documents »

B805713:
8o4fest < My Pictures
80474bs Soltare B oy Music
805713
Command Prompt 3! My Computer
8047661
nd - e indows pecia Player [controtPanct

"% Printers and Faxes
[s =
Help and Support
Q- @
) search

/m/dataj 77 Run...

Allerograms [

| | & oritw@Iocalhost:~ || O QEMU |
|L3essi0n Edit View Bookmarks Settings Help

Nirarr DT . R

Metal Perf. for x86 Vi 2012 26/ 49

Linux on VMware L1 on KVM L,

€9 Applications Places System @ 9 B3
2 | & oritw@localhost:~ 4# Ubuntu-7.10-server-a... | B8 oritw@localhost:~
=/
Eile Edit View Terminal Tabs Help
Virtual machine communication interface i<
virtual etherdi Ubuntu-7.10-server-amd64 - focalhost
Bridged netwo
Host-only net:
DHCP server ol
Host-only net:

Remote Console Devices

buntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
pplicable lau.

To access official Ubuntu documentation, please visit:
http: help.ubuntu.co

VMware Server

VMware Virtua an an ubuntu 64 running on top of umuare on top of kum"
Starting VMware ubuntu 64 running on top of umware on top of kum

R I STt buntuBubuntubd:"$ 1s —1

ubuntu ubuntu 4096 Z009-07-Z7

root root 4096 Z009-07-Z7

ubuntu ubuntu 215 2009-07-Z9 : .bash_history

ubuntu ubuntu 220 Z009-07-Z7 : .bash_logout

ubuntu ubuntu 3115 Z009-07-27 : .bashrc

ubuntu ubuntu 675 Z009-07-27 : .profile

ubuntu ubuntu 2009-072-27 H .sudo_as_admnin_successful

_user_cg -
sbuntuBubuntu64:~$ echo “Hello”

mount: /dev/sdb

Running on top of unuare on to

ello, I am an ubuntu 64 Running on top of umuare on top of kum
tbuntuBubuntubd : ~$
tbuntuBubuntubd : 3

2 oritw oritw 4096 2009-08-06 H Z
-- 1 oritw oritw 115 2008-03-25 : .Xauthority
1 oritw oritw 1075 2009-08-06 4 .xsession-er
lhost ~]$./vmware ubuntub4 mode
Aug 06 23:34:59.383: vmx| HV Settings: virtual exec = 'hardware’; virtual mmu =
“hardware’

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 27/49

Experimental Setup

@ Running Linux, Windows,
KVM, VMware, SMP, ...
@ Macro workloads:

e kernbench
e SPECjbb
o netperf

@ Multi-dimensional paging?
@ Multi-level device assignment?
@ KVM as L vs. VMware as L1?

@ See paper for full experimental
details and more benchmarks
and analysis

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

Macro: SPEC jbb and kernbench

kernbench

Host Guest | Nested | Nestedpry
Run time 324.3 | 355 406.3 391.5
% overhead vs. host - 9.5 25.3 20.7
% overhead vs. guest - - 14.5 10.3

SPEC jbb

Host Guest | Nested | Nestedprwy
Score 90493 | 83599 | 77065 | 78347
% degradation vs. host | - 7.6 14.8 13.4
% degradation vs. guest | - - 7.8 6.3

Table: kernbench and SPEC jbb results

@ Exit multiplication effect not as bad as we feared
@ Direct vmread and vmwrite (DRW) give an immediate boost

@ Take-away: each level of virtualization adds approximately the same
overhead!

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 29/49

Macro: multi-dimensional paging

Improvement ratio

I Shadow on EPT
[] Multi-dimensional paging

kernbench specjbb netperf

Impact of multi-dimensional paging depends on rate of page faults
Shadow-on-EPT: every L, page fault causes Ly multiple exits
Multi-dimensional paging: only EPT violations cause L exits

EPT table rarely changes: #(EPT violations) << #(page faults)
Multi-dimensional paging huge win for page-fault intensive
kernbench

Muli Ben-Yehuda (Technion & IBM Research)

Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 30/49

Macro: multi-level device assignment

Il throughput (Mbps)
[J 9e6cpu
1,000 T 100
900 - R - i - -
800
700
600
500
400
300
200
100

Yo

throughput (Mbps)

FTTTTTTTT

@ Benchmark: netperf TCP_STREAM (transmit)

@ Multi-level device assignment best performing option

@ But: native at 20%, multi-level device assignment at 60% (x3!)
@ Interrupts considered harmful, cause exit multiplication

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 31/49

Macro: multi-level device assignment (sans interrupts)

LO (bare metal) ——
L2 (direct/direct) —-»--

L2 (direct/virtio) ---x--

1000
900

@ 800

s

=) 700

5 600

= 500

>

§ 400

= 300
200)
100 ==

16

32 64 128
Message size (netperf -m)

256

@ What if we could deliver device interrupts directly to L»?
@ Only 7% difference between native and nested guest!

512

Muli Ben-Yehuda (Technion & IBM Research)

Bare-Metal Perf. for x86 Virtualization

Intel, Haifa, 2012

32/49

Micro: synthetic worst case CPUID loop

60,000 T T T
50,000 [~~~ L s B
PloYs o o) CETEITERTERERTRRREEEE TEEREE DR R PR ER T REETE -
30,000 —-gar-co " R I ottt =
Il cpu mode switch
20,000 [~ - R B
10,000 [—----c--ccceeccco- - - - B - i """"" B
— |
o w7 = 5

CPU Cycles
o
rr
or

Glﬁ%};g/e(./V%QJ'G gb;y'/;?ﬁvc gb;y};?%c; ob;y/%?%c;
o e g e e
So 3

@ CPUID running in a tight loop is not a real-world workload!

@ Went from 30x worse to “only” 6x worse

@ A nested exit is still expensive—minimize both single exit
cost and frequency of exits

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

Interim conclusions: Turtles

@ Efficient nested x86
virtualization is challenging but
feasible

@ A whole new ballpark opening
up many exciting
applications—security, cloud,
architecture, ...

@ Current overhead of 6-14%

o Negligible for some
workloads, not yet for others

o Work in progress—expect at
most 5% eventually

@ Code is available

@ Why Turtles?
It's turtles all the way down

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

Back to interrupts: How bad is it?

@ netperf TCP_STREAM
sender on 10Gb/s Ethernet Netperf
with 256 byte messages 100%

b=
o o [
o Using device assignmentwith S 0% F —
: . > 80% »
direct mapping in the IOMMU S 70% [o
< o =3
@ Only achieves 60% of % 60% [5
bare-metal performance s 50% s
@ Same results for memcached GE-) ggz’ - - 2G g
— o I fust
and apache S 509 _ LG &
@ Where does the rest go? S 10% |
@ Interrupts: approximately R 0% “— 0G
49,000 interrupts per second Baseline

with Linux

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 35/49

Interrupts cause exits

Guest
Virtual
Interrupts
@ Each interrupt causes at least
two exits :
. Hypervisor
@ One to deliver
@ One to signal completion Interrupts
1/0 Device

End of
Interrupt
(EQI)

EOI
1/0 APIC

Muli Ben-Yehuda (Technion & IBM Research)

Bare-Metal Perf. for x86 Virtualization

Intel, Haifa, 2012 36/49

ELI: Exitless Interrupts

(a) Baseline

i = ke

Physical Int W i
Interrupt nterrup
Interrupt ,n‘.acﬁus Completion E| hypervisor
’-—— ‘ guest
ELI
(b) gelivery ----____________________X ,,,,,, /

Interrupt hypervisor

ELI ‘[‘
delivery &
(C©) completion

hypervisor

(d) bare-metal [‘

(time)

ELI: direct interrupts for unmodified, untrusted guests

“ELI: Bare-Metal Performance for I/O Virtualization”, Gordon, Amit, Hare’El,
Ben-Yehuda, Landau, Schuster, Tsafrir, ASPLOS ’'12

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization

Intel, Haifa, 2012

Background: interrupts

IDTR IDT
- » Vector 1
- - » \ector n
IDT . Interru_pt Interrupt handlers
Register Descriptor
Table

@ |/O devices raise interrupts

@ CPU temporarily stops the currently executing code

@ CPU jumps to a pre-specified interrupt handler

Intel, Haifa, 2012

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization

ELI: delivery

Interrupt

Guest |
IDT Handler
Assigned
[
Il

ELI

Delivery !
L

T St ~°
Physical

#GP Interrupt
IDT Entry >

IDT Entry P=0
IDT Entry P=1

IDTR
Limit

VM Non-assigned
nterrupt
(#NP/#GP exit)

@ All interrupts are delivered directly to the guest
@ Host and other guests’ interrupts are bounced back to the host
@ ...without the guest being aware of it

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 39/49

ELI: signaling completion

@ Guests signal interrupt completions by writing to the Local
Advance Programmable Interrupt Controller (LAPIC)
End-of-Interrupt (EOI) register

@ Old LAPIC: hypervisor traps load/stores to LAPIC page
@ x2APIC: hypervisor can trap specific registers

Canfigure advanced CPU settings Disable K2APLC
Module Uersion:01.0F support. for O3es

e
Intel () Neon(R) CPU E7- B670 @ 2. 406iHz
Frequency 12

iy

L1 B
12 250 KB

§88e

13 70 KB Disabled
Ratio Status:Unlocked (tin: [RRISHE
Ratio fictual Value:18

© Select
[Enabled) T Select Iten

Harduare Prefetcher

Adjacent Cache Line Prefetch (Enabled) <+ Change Option

ACPT WADT ordex ing Modexn orderimgl | F1 General Help

Max CRUTD Ualue Linit [Dizabledl (CTRLAA fron renote Kbd)

Intel (R Uirtualization Tech (Enabled) FI0 Save and Exit
(CTRL-S fron renote K

Intel () HI Techuology (Enabled] ESC Ewit
Ta

@ Signaling completion without trapping requires x2APIC
@ ELI gives the guest direct access only to the EOI register

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

ELI: threat model

Threats: malicious guests might try to:
@ keep interrupts disabled
@ signal invalid completions
@ consume other guests or host interrupts

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

ELI: protection

@ VMX preemption timer to force exits instead of timer interrupts
@ Ignore spurious EOls
@ Protect critical interrupts by:

o Delivering them to a non-ELI core if available

o Redirecting them as NMIs—unconditional exit

e Use IDTR limit to force #GP exits on critical interrupts

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 42 /49

Evaluation: netperf

. -
102,000 —— 800 _ = Netperf
Exits/sec 3 o —
% 90% F , >C
S 80% o lesy, []63%| @
v _g 70% L] 55% - 4G §
o = 60% - L 3G 5
60%——98% £ 50% L 2
Time in guest £ 40% - 26 S
© 30% - i o
8 20% L 16 =
5 10% F !
_ X 0% \ | | 0G
bare-metal Baseline ELI EL|
performance! i

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 43 /49

Evaluation: apache

+ -
91,000 —1,100 Apache
Exits/sec §_ 100% .
< 90% I
S 80% Miaeoef 10K 2
S 70% [S
< ° [8K [0)
1) - + 0 % 600/0 C i g
65 /‘? _ 97% % 50% 6K o
Time in guest € 40% L g
V O 30% L P 4K S
S 20% | L oK
5 10% | _
-— O\o 00/0 T T T OK
bare metal Baseline E_LI ELI
performance! delivery

only

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 44/ 49

Evaluation: memcached

+ -
123,000 —1,000 Memcached
Exits/sec 3 100% . 180K
£ 90% - o
> L 160K <
3 80% 86%[140K O
2 70% 37% - D
£ zno L 120K ©
i + = 60% | _ ~
60%——100% 3§ 50% | 5
Time in guest £ 40% il g
Q 30% - - 60K &
S - _
v 3 20% [- 40K £
5 10% [20K =
>N T T T 0K
bare-metal Baseline ELI ELI
delivery
performance! only

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

Conclusions: ELI

@ Achievement unlocked: bare-metal performance for x86
@ ...if they use device assignment

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

The saga continues: ELVIS at SYSTOR

Haifa, Israel June4-6

The 5th Annual

Intemational Systems

and Storage Conference
m In cooperation with

ACM, [EEE, USENIX,

and TCE 2012

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012

Thank you! Questions?

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 48 /49

Hardware wishlist?

@ For nested virtualization: “sie”-like functionality

@ For general virtualization performance: fast inter-core exits, i.e.,
host-to-guest and guest-to-host inter-core notifications

@ For 1/0: IOMMU with 1/0 page faults (PRI)

@ In general: better chipset-level visibility. A cycle-accurate
simulator for 1/0 would be really nice. ..

Muli Ben-Yehuda (Technion & IBM Research) Bare-Metal Perf. for x86 Virtualization Intel, Haifa, 2012 49 /49

